Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
a) \(\dfrac{3}{4}+\dfrac{9}{5}\div\dfrac{3}{2}-1=\dfrac{3}{4}+\dfrac{18}{15}-1=\dfrac{39}{20}-1=\dfrac{19}{20}\)
b) \(\dfrac{6}{7}\cdot\dfrac{8}{13}+\dfrac{6}{13}\cdot\dfrac{9}{7}-\dfrac{4}{13}\cdot\dfrac{6}{7}=\dfrac{48}{91}+\dfrac{54}{91}-\dfrac{24}{91}=\dfrac{48+51-24}{91}=\dfrac{78}{91}=\dfrac{6}{7}\)
c) \(\dfrac{-3}{7}+\left(\dfrac{3}{-7}-\dfrac{3}{-5}\right)\)\(=\dfrac{-3}{7}+\left(\dfrac{-3}{7}-\dfrac{-3}{5}\right)=\dfrac{-3}{7}+\dfrac{6}{35}=-\dfrac{9}{35}\)
1: \(100-x^2=\left(10-x\right)\left(10+x\right)\)
2: \(b^2-a^2=\left(b-a\right)\left(b+a\right)\)
3: \(\left(3y\right)^2-\left(4x\right)^2=\left(3y-4x\right)\left(3y+4x\right)\)
a) \(=3\left(x-3y\right)\)
b) \(=5xy\left(3x-2y\right)\)
c) \(=5y\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(5y+2\right)\)
d) \(=\left(9x^2+6x+1\right)-4y^2=\left(3x+1\right)^2-4y^2=\left(3x+1-2y\right)\left(3x+1+2y\right)\)
e) \(=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
g) \(=x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(x-1\right)\)
a) \(3x-9y\)
\(=3\left(x-3y\right)\)
b) \(15x^2y-10xy^2\)
\(=5xy\left(3x-2y\right)\)
c) \(5xy+10y^2+2x+4y\)
\(=\left(x+2y\right)\left(5y+2\right)\)
d) \(9x^2-4x^2+6x+1\)
\(=\left(3x+1-2y\right)\left(3x+1+2y\right)\)
e) \(x^2+4x+3\)
\(=\left(x+1\right)\left(x+3\right)\)
d) \(x^2-3x+2\)
\(=\left(x-1\right)\left(x-2\right)\)
Ta xét:
1. Nếu \(x=2015\) hoặc \(x=2016\) thì thỏa mãn đề bài
2. Nếu \(x< 2015\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>0\\\left|x-2016\right|^{2016}>1\end{cases}}\)
\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>0+1=1\) (vô nghiệm)
3. Nếu \(x>2016\) thì \(\hept{\begin{cases}\left|x-2015\right|^{2015}>1\\\left|x-2016\right|^{2016}>0\end{cases}}\)
\(\Leftrightarrow\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}>1+0=1\) (vô nghiệm)
Vậy phương trình có 2 nghiệm là \(\left(2015;2016\right)\)
*)Xét x < 2015
=> |x - 2016| > 1 <=> |x - 2016|2016 > 1
=> x < 2015 không là nghiệm của pt
**)Xét x > 2016
=> |x - 2015| > 1 <=> |x - 2015|2015 > 1
=> x > 2016 không là nghiệm của pt
***) Xét 2015 < x < 2016
=> 0 < |x - 2015| < 1 (1)
0 < |x - 2016| = |2016 - x|< 1 (2)
=> |x - 2015| + |x - 2016| = |x - 2015| + |2016 - x| = x - 2015 + 2016 - x = 1
Mà: |x - 2015| > |x - 2015|2015 (theo (1)) và |x - 2016| > |x - 2016|2016 (theo (2))
=> |x - 2015|2015 + |x - 2016|2016 < |x - 2015| + |x - 2016| = 1
Vậy phương trình chỉ có 2 nghiệm là x1 = 2015 và x2 = 2016
a) \(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=ab\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=ab\)
\(\Leftrightarrow\dfrac{4ab}{4}=ab\left(đúng\right)\)
b) \(2\left(x^2+y^2\right)=\left(x+y\right)^2+\left(x-y\right)^2\)
\(\Leftrightarrow2x^2+2y^2=x^2+2xy+y^2+x^2-2xy+y^2\)
\(\Leftrightarrow2x^2+2y^2=2x^2+2y^2\left(đúng\right)\)
c) \(\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)=2y\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x+y-x+y\right)=2y\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right).2y=2y\left(x+y\right)\left(đúng\right)\)
a) Ta có: \(\widehat{B}+\widehat{C}=140^0+40^0=180^0\)
Mà 2 góc này là 2 góc trong cùng phía
=> AB//CD
=> ABCD là hthang
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{A}+\widehat{D}=180^0\\\widehat{A}-\widehat{D}=110^0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(180^0+110^0\right):2=145^0\\\widehat{D}=\left(180^0-110^0\right):2=35^0\end{matrix}\right.\)
Answer:
Bài 1 và bài 2 mình bỏ vì đã có hướng dẫn giải.
Bài 3:
Có \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\text{(loại)}\\x=3\end{cases}}\)
Với x= 3 thì \(A=\frac{3-5}{3-4}=2\)
\(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{\left(x+5\right)\left(x-5\right)+\left(x-6\right)2x-\left(2x^2-2x-50\right)}{2x\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}\)
\(=\frac{x-5}{2x}\)
\(P=A:B=\frac{x-5}{x-4}:\frac{x-5}{2x}=\frac{x-5}{x-4}.\frac{x-5}{2x}=\frac{2x}{x-4}=2+\frac{8}{x-4}\)
Để P thuộc Z thì \(\frac{8}{x-4}\inℤ\Leftrightarrow x-4\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Bài 4: Bạn thông cảm, mình không biết làm ạ.
Bài 5:
Ta rút gọn từng biểu thức:
\(\frac{2bc-2016}{3x-2bc+2016}=-1+\frac{3c}{3c-2bc+2016}\)
\(\frac{-2b}{3-2b+ab}=\frac{-2bc}{3c-2bc+abc}=\frac{-2bc}{3c-2bc+2016}\)
\(\frac{4032}{3ac-4032+2016a}=-1+\frac{2016a}{3ac-2abc+2016a}=-1+\frac{2016}{3c-2bc+2016}\)
\(\Rightarrow P=-1\)