
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 40: -6<2x<=8
=>-3<x<=4
=>A=(-3;4]
=>\(C_{R}A\) =R\A=(-∞;3]\(\cup\) (4;+∞)
|x+1|<=2
=>-2<=x+1<=2
=>-3<=x<=1
=>B=[-3;1]
=>\(C_{R}B\) =R\B=(-∞;-3)\(\cup\) (1;+∞)
\(\left(C_{R}A\right)\) \\(\left(C_{R}B\right)\) =[-3;1]
=>Không có câu nào đúng
Câu 39:
Để A giao B=rỗng thì -m+2>2m+1 hoặc -m+5<=2m-3
=>-3m>-1 hoặc -3m<=-8
=>m<1/3 hoặc m>=8/3
=>Chọn B

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)
Để \(A,B\ne\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)
Kết hợp ĐK \(2< m< 8\)
\(\Rightarrow m\in\left(2;8\right)\)

a) \(B\subset A\)
\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)
\(\Rightarrow2m-1\le-4< 5\le m+3\)
\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)
\(\Rightarrow m\in\varnothing\)
b) \(A\text{∩ }B=\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)
Vậy \(m< -7;m>3\)

a) (-\infty ; \, 2) \cap (-1; \, +\infty)(−∞;2)∩(−1;+∞)=(-1;2)
b) (−1;6) ∪ [4;8)=(-1;8]
c) (−∞;−5] ∩(−5;1)={-5}a) (-\infty ; \, 2) \cap (-1; \, +\infty)(−∞;2)∩(−1;+∞)=(-1;2)
b) (−1;6) ∪ [4;8)=(-1;8]
c) (−∞;−5] ∩(−5;1)={-5}

a ) \mathbb{R} \backslash (-3; \, 1]R\(−3;1]=(-∞;-3]∪(1;+∞)
b) (-\infty; \, 1) \backslash [-2; \, 0](−∞;1)\[−2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)∪(0;1)
a ) R\(−3;1]=(-∞;-3]∪(1;+∞)
b) [-2; \, 0](−∞;1)\[−2;0]= [-2; \, 0]∞;-2)∪(0;1)
5: \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+24y^4+y^4\)
\(=\left(x^2+5xy\right)^2+2\cdot\left(x^2+5xy\right)\cdot5y^2+\left(5y^2\right)^2\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương
=>Mệnh đề này đúng
Mệnh đề phủ định là \(\overline{E}\) : \(\exists x,y\in R:\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) không là số chính phương
4: \(x\left(x+2\right)+y\left(y-4\right)+10\)
\(=x^2+2x+1+y^2-4y+4+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5>0\forall x,y\)
=>Mệnh đề này đúng
Mệnh đề phủ định là: \(\overline{D}:\) \(\exists x,y\in R:x\left(x+2\right)+y\left(y-4\right)+10\le0\)
3: \(2x^2+4xy+5y^2\)
\(=2x^2+4xy+2y^2+3y^2\)
\(=2\left(x+y\right)^2+3y^2\ge0\forall x,y\)
=>Mệnh đề này sai
Mệnh đề phủ định là: \(\overline{C}:\forall x,y\in R:2x^2+4xy+5y^2\ge0\)
1: TH1: n=3k
\(A=n^2+1=\left(3k\right)^2+1=9k^2+1\) không chia hết cho 3(1)
TH2: n=3k+1
\(A=n^2+1\)
\(=\left(3k+1\right)^2+1\)
\(=9k^2+6k+2=3\left(3k^2+2k\right)+2\) không chia hết cho 3(2)
TH3: n=3k+2
\(A=n^2+1\)
\(=\left(3k+2\right)^2+1\)
\(=9k^2+12k+4+1\)
\(=9k^2+12k+5=9k^2+12k+3+2=3\left(3k^2+4k+1\right)+2\) không chia hết cho 3(3)
Từ (1),(2),(3) suy ra A không chia hết cho 3
=>Mệnh đề này đúng
Mệnh đề phủ định là: \(\overline{A}:\exists n\in N:n^2+1\vdots3\)
2: \(n^3+3n^2-4n\)
\(=n\left(n^2+3n-4\right)\)
\(=n\left(n+4\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)+6n\left(n-1\right)\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên n(n-1)(n-2)⋮3!
=>n(n-1)(n-2)⋮6
mà 6n(n-1)⋮6
nên n(n-1)(n-2)+6n(n-1)⋮6
=>\(n^3+3n^2-4n\) ⋮6
=>Mệnh đề này sai
Mệnh đề phủ định là: \(\overline{B}:\exists n\in N:n^3+3n^2-4n\) ⋮6