Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) [\(\dfrac{-2}{3}\).(-3)]. (x.x^2).(y.y).z
=2x^3y^2z
- Bậc: 6
b) A=\(\dfrac{-1}{4}\)x^2y^2. \(\dfrac{4}{3}\)xy^3
= (\(\dfrac{-1}{4}\) . \(\dfrac{4}{3}\)). ( x^2.x). ( y^2.y^3)
= \(\dfrac{-1}{3}\)x^3y^5
- Bậc: 8
\(f(x)=ax^2+bx+6\)
Để \(f(x)\) là đa thức bậc \(1\) thì \(ax^2=0\)
\(→a=0\)
Thay \(x=1\) vào \(f(x)=ax^2+bx+6\)
\(f(1)=b.1+6=b+6\)
Mà \(f(1)=3\)
\(\Rightarrow b+6=3\Rightarrow b=3−6\Rightarrow b=−3\)
Vậy \(a=0;b=−3\)
a) Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Xét ΔCBN và ΔCDN có
CB=CD(gt)
\(\widehat{BCN}=\widehat{DCN}\)(CN là tia phân giác của \(\widehat{BCD}\))
CN chung
Do đó: ΔCBN=ΔCDN(c-g-c)
⇒\(\widehat{CNB}=\widehat{CND}\)(hai góc tương ứng)
mà \(\widehat{CNB}+\widehat{CND}=180^0\)(hai góc kề bù)
nên \(\widehat{CNB}=\widehat{CND}=\dfrac{180^0}{2}=90^0\)
hay CN⊥BD(đpcm)
c) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC
Xét ΔABM vuông tại M có
\(\widehat{ABM}+\widehat{BAM}=90^0\)(hai góc nhọn phụ nhau)(3)
Xét ΔBCN vuông tại N có
\(\widehat{NBC}+\widehat{BCN}=90^0\)(hai góc nhọn phụ nhau)(4)
Từ (3) và (4) suy ra \(\widehat{BAM}=\widehat{BCN}\)
mà \(\widehat{BAM}=\dfrac{1}{2}\cdot\widehat{BAC}\)(AM là tia phân giác của \(\widehat{BAC}\))
và \(\widehat{BCN}=\dfrac{1}{2}\cdot\widehat{DCB}\)(CN là tia phân giác của \(\widehat{DCB}\))
nên \(\widehat{BAC}=\widehat{DCB}\)(5)
Xét ΔABC có \(\widehat{ECB}\) là góc ngoài tại đỉnh C
nên \(\widehat{ECB}=\widehat{ABC}+\widehat{BAC}\)(Định lí góc ngoài của tam giác)(6)
Xét ΔBDC có \(\widehat{ADC}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DBC}+\widehat{DCB}\)(Định lí góc ngoài của tam giác)
hay \(\widehat{ADC}=\widehat{ABC}+\widehat{DCB}\)(7)
Từ (5), (6) và (7) suy ra \(\widehat{ECB}=\widehat{ADC}\)
Xét ΔBCE và ΔCDA có
BC=CD(gt)
\(\widehat{ECB}=\widehat{ADC}\)(cmt)
CE=DA(gt)
Do đó: ΔBCE=ΔCDA(c-g-c)
⇒BE=CA(hai cạnh tương ứng)
mà BA=CA(gt)
nên BA=BE(đpcm)
`@` `\text {Ans}`
`\downarrow`
`c)`
\(2-3^{x-1}-7=11\)
`\Rightarrow`\(3^{x-1}-5=11\)
`\Rightarrow`\(3^{x-1}=11+5\)
`\Rightarrow`\(3^{x-1}=16\)
Bạn xem lại đề
`d)`
\(\left(x-\dfrac{3}{5}\right)\div\dfrac{-1}{3}=-0,4\)
`\Rightarrow`\(x-\dfrac{3}{5}=-0,4\cdot\left(-\dfrac{1}{3}\right)\)
`\Rightarrow`\(x-\dfrac{3}{5}=\dfrac{2}{15}\)
`\Rightarrow`\(x=\dfrac{2}{15}+\dfrac{3}{5}\)
`\Rightarrow`\(x=\dfrac{11}{15}\)
Vậy, \(x=\dfrac{11}{15}\)
1:
a: A=x^4+6x^3-3x^2-4x+8
bậc là 4
B=-x^4-6x^3+3x^2-2x+5
bậc là 4
b: A(x)+B(x)
=x^4+6x^3-3x^2-4x+8-x^4-6x^3+3x^2-2x+5
=-6x+13
A(x)-B(x)
=x^4+6x^3-3x^2-4x+8+x^4+6x^3-3x^2+2x-5
=2x^4+12x^3-6x^2-2x+3
\(=\dfrac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}+\dfrac{9^3\cdot71}{3^2\cdot71}=3^2+81=90\)
\(=\dfrac{2^4\cdot5^4\cdot3^6}{2^8\cdot3^4}=3^2\cdot5^4\cdot\dfrac{1}{2^4}\)