Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có AM là trung tuyến và AM=AB
Khi đó tanB - 3tanC bằng bao nhiêu vậy
mấy đứa ới ời ơi
Áp dụng Py-ta-go ta có
AH^2=AB^2-BH^2=>AH=5căn3
Áp dụng hệ thức lượng trong tam giác
AH^2=BH*HC=>HC=AH^2/BH=15
=>tanB=5căn3/5=căn3
tanC=5căn3/15
=>3tanC=5căn3/15*3=căn3
nên tanB=3tanC
A B C O M E F P Q' R S T H G Q
Qua P dựng đường thẳng vuông góc với AM, đường thẳng này cắt EF tại Q'. Ta sẽ chỉ ra Q trùng Q'.
Thật vậy: Ta có ^BFC = ^BEC = 900 => Tứ giác BFEC nội tiếp đường tròn (BC)
=> ^AFE = ^ACB = ^BAP (Tính chất góc tạo bởi tiếp tuyến và dây) => EF // AP (2 góc so le trong bằng nhau)
Gọi H là trực tâm \(\Delta\)ABC, EF cắt BC tại R, AR cắt lại (O) ở S, kẻ đường kính AT của đường tròn (O)
Khi đó dễ thấy tứ giác BHCT là hình bình hành. Do M là trung điểm BC nên H,M,T thẳng hàng
Áp dụng hệ thức lượng trong đường tròn có: RF.RE = RB.RC = RS.RA => A,S,E,F cùng thuộc 1 đường tròn
Mà dễ có A,E,H,F cùng nằm trên đường tròn (AH) nên A,S,F,H,E cùng nằm trên (AH)
=> ^ASH = 900 => SH vuông góc AS. Lại có ST vuông góc AS nên S,H,T thẳng hàng
Kết hợp H,T,M thẳng hàng suy ra S,H,M thẳng hàng. Từ đây MH vuông góc AR tại S
Cũng có AH vuông góc RM nên H là trực tâm \(\Delta\)RAM => RH vuông góc AM
Mà PQ' cũng vuông góc AM nên RH // PQ'. Nếu ta gọi BE giao PQ' tại G thì RH // PG
Áp dụng ĐL Thales, ta có các tỉ số: \(\frac{BH}{HG}=\frac{BR}{RP}\)(Vì PH // PG) \(=\frac{BF}{FA}\)(Vì EF // AP)
Do đó AG // FH (ĐL Thales đảo) hay CH // AG => \(\frac{EC}{EA}=\frac{EH}{EG}\)(Hệ quả ĐL Thales)
Chú ý RH // PQ' hay RH // GQ' suy ra \(\frac{EH}{EG}=\frac{ER}{EQ'}\).Từ đó \(\frac{EC}{EA}=\frac{ER}{EQ'}\)=> AQ' // CR (ĐL Thales đảo)
Khi đó, đường thẳng qua A song song với BC cắt EF tại Q'. Do vậy Q' trùng Q
Điều này tức là PQ vuông góc AM (đpcm).
\(tan\text{ }B\text{ }-3.tan\text{ }C=tan\text{ }60^o-3.tan\text{ }30^o=\sqrt{3}-3.\frac{1}{\sqrt{3}}=0\text{ }\text{ }\text{ }\text{ }\text{ }\)