Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi tử là x
Mẫu là x+6
Theo đề, ta có:
\(\dfrac{x+3}{x+5}=\dfrac{4}{5}\)
=>5x+15=4x+20
=>x=5
(3) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
\(\Leftrightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(luôn đúng\right)\)
(4)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a +b+c}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)
\(\Leftrightarrow1+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+1+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{b}{c}+1\ge9\)
\(\Leftrightarrow3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge3+2+2+2\ge9\) (đpcm)
\(\left|x+4\right|=2x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=2x-5\\x+4=-2x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=-5-4\\x+2x=5-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=-9\\3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=\frac{1}{3}\end{cases}}}\)
Vậy x=9; x=\(\frac{1}{3}\)
giải
\(\Rightarrow\orbr{\begin{cases}x+4=2x-5\\x+4=-2x+5\end{cases}\Rightarrow\orbr{\begin{cases}x-2x=-5-4\\x+2x=5-4\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-9\\3x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=9\\x=\frac{1}{3}\end{cases}}}\)
vậy pt có 2 nghiệm là \(9;\frac{1}{3}\)
Câu 3:
a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)
\(=6x^2-2x-6x^2-2x+18x+6\)
=14x+6
b: Ta có: \(2x\left(x+7\right)-3x\left(x+1\right)\)
\(=2x^2+14x-3x^2-3x\)
\(=-x^2+11x\)
Câu 2:
a: Ta có: \(\left(-8x^5+12x^3-16x^2\right):4x^2\)
\(=-8x^5:4x^2+12x^3:4x^2-16x^2:4x^2\)
\(=-2x^3+3x-4\)
b: Ta có: \(\left(12x^3y^3-18x^2y+9xy^2\right):6xy\)
\(=12x^3y^3:6xy-18x^2y:6xy+9xy^2:6xy\)
\(=2x^2y^2-3x+\dfrac{3}{2}y\)
c: Ta có: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)
\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)
\(=x^2-8x+3\)
d: Ta có: \(\dfrac{6x^4-13x^3+7x^2-x-5}{3x+1}\)
\(=\dfrac{6x^4+2x^3-15x^3-5x^2+12x^2+4x-5x-\dfrac{5}{3}-\dfrac{10}{3}}{3x+1}\)
\(=2x^3-5x^2+4x-\dfrac{5}{3}-\dfrac{\dfrac{10}{3}}{3x+1}\)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
____
\(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
____
\(\left(x+2\right)^2-y^2\)
\(=\left[\left(x+2\right)-y\right]\left[\left(x+2\right)+y\right]\)
\(=\left(x-y+2\right)\left(x+y+2\right)\)
____
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
____
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
____
\(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)
\(=\left[2x\left(y-1\right)-\left(y-1\right)\right]\left[2x\left(y+1\right)+\left(y+1\right)\right]\)
\(=\left(y-1\right)\left(2x-1\right)\left(2x+1\right)\left(y+1\right)\)
\(a,PT\left(1\right)=\dfrac{75y^4}{42x^2y^5};PT\left(2\right)=\dfrac{28x}{42x^2y^5}\\ b,PT\left(1\right)=\dfrac{11y^2}{102x^4y^3};PT\left(2\right)=\dfrac{9x^3}{10x^4y^3}\\ c,PT\left(1\right)=\dfrac{3x\left(3x+1\right)}{36x^2y^4};PT\left(2\right)=\dfrac{4y\left(y-2\right)}{36x^2y^4}\\ d,PT\left(1\right)=\dfrac{6y^2}{36x^3y^4};PT\left(2\right)=\dfrac{4x\left(x+1\right)}{36x^3y^4};PT\left(3\right)=\dfrac{9x^2y\left(x-1\right)}{36x^3y^4}\)
\(e,PT\left(1\right)=\dfrac{12y^4\left(3+2x\right)}{120x^4y^5};PT\left(2\right)=\dfrac{75x^2y^3}{120x^4y^5};PT\left(3\right)=\dfrac{8x^3}{120x^4y^5}\\ f,PT\left(1\right)=\dfrac{3\left(x+1\right)\left(4x-4\right)}{6x\left(x+3\right)\left(x+1\right)};PT\left(2\right)=\dfrac{2\left(x+3\right)\left(x-3\right)}{6x\left(x+1\right)\left(x+3\right)}\)
\(g,PT\left(1\right)=\dfrac{4x^2}{2x\left(x+2\right)^3};PT\left(2\right)=\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)^3}\\ h,PT\left(1\right)=\dfrac{5}{3x\left(x-2\right)\left(x+2\right)}=\dfrac{10\left(x+3\right)}{6x\left(x-2\right)\left(x+2\right)\left(x+3\right)}\\ PT\left(2\right)=\dfrac{3}{2\left(x+2\right)\left(x+3\right)}=\dfrac{9x\left(x-2\right)}{6x\left(x+2\right)\left(x+3\right)\left(x-2\right)}\)
a: Xét ΔABM và ΔADM có
AB=AD
\(\widehat{BAM}=\widehat{DAM}\)
AM chung
Do đó: ΔABM=ΔADM