Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ư(240)={1;2;3;4;5;6;8;10;12;15;16;20;24;30;40;48;60;80;120;240}
Trong các số này thì các số là bội của 24 là:
24;48;120;240
h: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
m: \(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
\(A=3+3^2+...+3^{2005}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2006}\)
\(\Rightarrow3A-A=3^{2006}-3\)
\(\Rightarrow2A=3^{2006}-3\)
\(\Rightarrow2A+3=3^{2006}\) là 1 lũy thừa của 3 (đpcm)
4.
\(B=1+1+2+2^2+2^3+...+2^{100}\)
\(2B=2+2+2^2+...+2^{101}\)
\(\Rightarrow2B-B=2+2^{101}-\left(1+1\right)=2^{101}\)
\(\Rightarrow B=2^{101}\) là 1 lũy thừa của 2 (đpcm)
Bài 1:
\(A=2+2^2+2^3+...+2^{2003}+2^{2004}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{2002}\right)⋮7\)
Bài 2:
\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+2^5+...+2^{57}\right)⋮15\)
Bài 3:
\(A=1+3+3^2+3^3+...+3^{1990}+3^{1991}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1989}+3^{1990}+3^{1991}\right)\)
\(=13+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
Bài 4:
\(A=4+4^2+4^3+4^4+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)\)
\(=20\left(1+4^2+...+4^{22}\right)⋮20\)
a) \(\left(0,5\right)^{12}:\left(0,5\right)^{10}=\left(0,5\right)^{12-10}=\left(0,5\right)^2\)
b) \(\sqrt{36}=\pm6\)
c)\(\left(0,75\right)^{22}:\left(0,75\right)^{12}=\left(0,75\right)^{22-12}=\left(0,75\right)^{10}\)
d) \(\sqrt{49}=\pm7\)
\(P=\dfrac{8a+15}{4a+1}=\dfrac{4a+4a+1+1+13}{4a+1}=\dfrac{4a+1}{4a+1}+\dfrac{4a+1}{4a+1}+\dfrac{13}{4a+1}=1+1+\dfrac{13}{4a+1}\)
Để P nguyên thì \(\dfrac{13}{4a+1}\in Z\) hay \(4a+1\in U\left\{13\right\}=\left\{\pm1;\pm13\right\}\)
- 4a+1=1 --> a=0
- 4a+1 = -1 --> a= -1/2 ( loại )
- 4a+1 = 13 --> a=3
-4a+1 = -13 --> a= -7/2 ( loại )
Vậy \(a\in Z=\left\{0;3;\right\}\) thì P nhận giá trị nguyên
\(100:\left\{2\cdot\left[30-\left(12+7\right)\right]\right\}\)
\(=100:\left[2\cdot\left(30-19\right)\right]\)
\(=100:\left(2\cdot11\right)\)
\(=100:22\)
\(=\dfrac{100}{22}\)
\(=\dfrac{50}{11}\)
b) ( 9. x + 56 ). 3 = 273
( 9. x + 56 )= 273 : 3
( 9. x + 56 ) = 91
9x = 91 - 56
9x = 35
x = 35/9
a) (4 . x + 112) - 79 = 321
(4 . x + 112) = 321 + 79
(4 . x + 112) = 400
4 . x = 400-112
4 . x = 288
x = 288 : 4
x = 72
b) ( 9. x + 56 ). 3 = 273
( 9. x + 56 ) = 273 : 3
( 9. x + 56 ) = 91
9x = 91 - 56
9x = 35
x = 35/9
c) (50 - 6x) . 18 = 23 . 32 . 5
(50 - 6x) . 18 = 8 . 9 . 5
(50 - 6x) . 18 = 360
50 - 6x = 360 : 18
50 - 6x = 20
6x = 50 - 20
6x = 30
x = 30 : 6
x = 5
d) (17x - 52) : 8 + 65 = 92
(17x - 52) : 8 + 65 = 81
(17x - 52) : 8 = 81 - 65
(17x - 52) : 8 = 16
17x - 52 = 16 . 8
17x - 25 = 128
17x = 128 + 25
17x =153
x = 153 : 17
x = 9