Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc+\left(ab+bc+ca\right)-\left(a+b+c\right)\ge0\)
\(\Leftrightarrow a+b+c-\left(ab+bc+ca\right)\le1-abc\le1\)
Mà \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\end{cases}}\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-\left(ab+bc+ca\right)\le1-abc\le1\)
a,b,c∈[0,1]⇒b≥b2;c≥c3
Ta có:
a,b,c∈[0,1]⇒(1−a)(1−b)(1−c)≥0
⇔1−a−b−c+ab+bc+ca−abc≥0
⇔a+b+c−ab−bc−ca+abc≤1
⇒a+b2+c3−ab−bc−ca≤1
⇒đpcm
Dấu "=" xảy ra khi trong a,b,ccó 1 số bằng 1, 1 số bằng 0, số còn lại là 1 hoặc 0
Có: 1-a, 1-b, 1-c ≥ 0
=> (1-a)(1-b)(1-c) = 1 - (a+b+c) + ab+bc+ca - abc \(\ge\) 0
1 \(\ge\) a+b+c - ab - bc - ca + abc (*)
mặt khác cũng từ gt: 0\(\le\)≤ a, b, c \(\le\) 1 => b \(\ge\) b2 ; c \(\ge\) c3 ; abc \(\ge\) 0
(*) => 1 \(\ge\) a + b2 + c3 - ab-bc-ca (đpcm)
Dấu "=" xảy ra khi có 1 số = 0 và 1 số = 1
Có :
( 1 - a ) ( 1 - b ) ( 1 - c ) ≥ 0 ( do a,b,c thuộc [0;1] )
\(\Leftrightarrow\)1 - a - b - c +ab + bc + ca- abc ≥ 0
\(\Leftrightarrow\) a + b + c - ab - bc -ca \(\le\) 1 - abc
Do a,b,c thuộc [0;1] nên b2\(\le\)b; c3 \(\le\)c và abc \(\le\) 1
Suy ra 1\(\ge\)1 - abc \(\ge\) a + b + c -ab - bc - ca \(\ge\)a + b2 + c3 -ab - bc - ca
Dấu bằng xảy ra khi 2 số bằng 0, 1 số bằng 1. ( tự thay )
Vì a, b, c thuộc đoạn (0,1) nên 1- a, 1 - b, 1 - c \(\ge\)0.
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\le1\left(đpcm\right)\)
Dấu bằng xảy ra khi có 1 số bằng 1, 2 số còn lại bằng 0
À thêm nx b<b^2, c<c^3 vì thuộc (0,1). Thay vào kết quả trên ta có đpcm