Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc+\left(ab+bc+ca\right)-\left(a+b+c\right)\ge0\)
\(\Leftrightarrow a+b+c-\left(ab+bc+ca\right)\le1-abc\le1\)
Mà \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\end{cases}}\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-\left(ab+bc+ca\right)\le1-abc\le1\)
Có :
( 1 - a ) ( 1 - b ) ( 1 - c ) ≥ 0 ( do a,b,c thuộc [0;1] )
\(\Leftrightarrow\)1 - a - b - c +ab + bc + ca- abc ≥ 0
\(\Leftrightarrow\) a + b + c - ab - bc -ca \(\le\) 1 - abc
Do a,b,c thuộc [0;1] nên b2\(\le\)b; c3 \(\le\)c và abc \(\le\) 1
Suy ra 1\(\ge\)1 - abc \(\ge\) a + b + c -ab - bc - ca \(\ge\)a + b2 + c3 -ab - bc - ca
Dấu bằng xảy ra khi 2 số bằng 0, 1 số bằng 1. ( tự thay )
Vì a, b, c thuộc đoạn (0,1) nên 1- a, 1 - b, 1 - c \(\ge\)0.
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\le1\left(đpcm\right)\)
Dấu bằng xảy ra khi có 1 số bằng 1, 2 số còn lại bằng 0
À thêm nx b<b^2, c<c^3 vì thuộc (0,1). Thay vào kết quả trên ta có đpcm
Không mất tính tổng quát ta giả sử \(0\le a\le b\le c\le1\)
\(\Rightarrow\left(1-c\right)\left(b-a\right)\ge0\)\(\Leftrightarrow b-a-bc+ac\ge0\Leftrightarrow ac+b\ge a+bc\)
\(\Leftrightarrow ac+b+1\ge a+bc+1\)\(\Rightarrow\dfrac{a}{ac+b+1}\le\dfrac{a}{a+bc+1}\)(1)
ta cũng có : \(\left(1-b\right)\left(c-a\right)\ge0\Leftrightarrow ab+c\ge a+bc\Leftrightarrow ab+c+1\ge a+bc+1\)
\(\Rightarrow\dfrac{b}{ab+c+1}\le\dfrac{b}{a+bc+1}\) mà \(b\le c\le1\)
nên \(\dfrac{b}{a+bc+1}\le\dfrac{bc}{a+bc+1}\) \(\Rightarrow\dfrac{b}{ab+c+1}\le\dfrac{bc}{a+bc+1}\)(2)
ta lại có : \(\dfrac{c}{a+bc+1}\le\dfrac{1}{a+bc+1}\)(3)
Cộng Ba vế BĐT (1) (2) (3) lại với nhau ta có
\(\dfrac{a}{1+b+ac}+\dfrac{b}{1+c+ab}+\dfrac{c}{1+a+bc}\le\dfrac{a+bc+1}{a+bc+1}=1\)
không cần giả sử gì hết , phang luôn \(\left(a-1\right)\left(b-1\right)\ge0\) (:V)
\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow ab+c+1\ge a+b+c\)
\(\Rightarrow VT\le\sum\dfrac{b}{a+b+c}=1\)
Dấu = xảy ra : 2 số bằng 1 , số còn lại tùy ý
Mở rộng : \(\forall a,b,c\in\left[0;1\right]\).Cmr:
\(\dfrac{a}{b+c+1}+\dfrac{b}{c+a+1}+\dfrac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
( Olympic USA 1980 )
Ta có: \(1-a\ge0\Leftrightarrow a\le1\Leftrightarrow a+b-b+c-c\le1\Leftrightarrow a+b+c\le1+b+c\)
\(\Leftrightarrow\frac{a}{a+b+c}\ge\frac{a}{1+b+c}\left(1\right)\)
Tương tự: \(1-b\ge0\Leftrightarrow b\le1\Leftrightarrow b+a-a+c-c\le1\Leftrightarrow a+b+c\le1+c+a\)
\(\Leftrightarrow\frac{b}{a+b+c}\ge\frac{b}{1+c+a}\left(2\right)\)
Và: \(1-c\ge0\Leftrightarrow c\le1\Leftrightarrow c+a-a+b-b\le1\Leftrightarrow a+b+c\le1+a+b\)
\(\Leftrightarrow\frac{c}{a+b+c}\ge\frac{c}{1+a+b}\left(3\right)\)
Cộng (1)(2) và (3) vế theo vế:
\(\Rightarrow\frac{a+b+c}{a+b+c}=1\ge\frac{a}{1+b+ac}+\frac{b}{1+c+ab}+\frac{c}{1+a+bc}\)
ĐPCM
bạn ơi, bạn xem lại đi. Mẫu của bạn là 1+b+c chứ đâu phải là 1+b+ac. Mấy cái khác cũng thế
Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)
Tương tự ta có:
\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)
\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)
\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)
Từ (1), (2), (3), (4) ta có:
\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)
Ta lại có:
\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)
Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.
\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)
\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)
Vậy ta có ĐPCM.
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.