Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để \(\frac{\sqrt{x-3}}{2x+1}\)có nghĩa thì 2x+1 \(\ne\)0
\(\Leftrightarrow\)2x \(\ne\)-1
\(\Leftrightarrow\)x \(\ne\)\(\frac{-1}{2}\)
b. Để \(\frac{\sqrt{1-2x}}{x^2-6x+9}\) có nghĩa thì x2-6x+9\(\ne\)0
\(\Leftrightarrow\)(x-3)2 \(\ne\)0
\(\Leftrightarrow\)x-3 \(\ne\)0
\(\Leftrightarrow\)x \(\ne\)3
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}\)
Biểu thức \(A\) có nghĩa khi \(\hept{\begin{cases}\sqrt{x}+1\ne0;\text{ }x\ge0\\\sqrt{x}-1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{x+\sqrt{x}-2\sqrt{x}+2-2\sqrt{x}-2}{x-1}=\frac{x-3\sqrt{x}}{x-1}\)
Vậy, \(A=\frac{x-3\sqrt{x}}{x-1}\)
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
a; \(A=\left(\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\left(1-\dfrac{2x}{x^2+1}\right)\)
\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x^2+1\right)}:\dfrac{x^2+1-2x}{x^2+1}=\dfrac{1}{x-1}\)
b: Để A<0 thì x-1<0
hay x<1
c: Để A nguyên thì \(x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
\(\Leftrightarrow2\sqrt{2}\left(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}\right)=7x^2-x+4\)
\(\Leftrightarrow\left[\left(3x^2-1\right)-2\sqrt{2}\sqrt{3x^2-1}+2\right]+\left[\left(x^2-x\right)-2\sqrt{2}\sqrt{x^2-x}+2\right]+\left[2x^2+2\sqrt{2}x\sqrt{x^2+1}+\left(x^2+1\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-1}-\sqrt{2}\right)^2+\left(\sqrt{x^2-x}-\sqrt{2}\right)^2+\left(\sqrt{x^2+1}+\sqrt{2}x\right)^2=0\)
Làm nốt
\(\Delta=\left(-1\right)^2-4.1.\left(-2\right)=9>0\Rightarrow\sqrt{\Delta}=3\)
Vậy PT có 2 nghiệm phân biệt: \(x_1=\frac{-\left(-1\right)+3}{2}=2;x_2=\frac{-\left(-1\right)-3}{2}=-1\)
Áp dụng bđt Cauchy :
\(B=\frac{x^3+200}{x}=x^2+\frac{200}{x}=x^2+\frac{100}{x}+\frac{100}{x}\ge3.\sqrt[3]{x^2.\frac{100}{x}.\frac{100}{x}}=30\sqrt[3]{10}\)
Dấu "=" xảy ra khi \(x^2=\frac{100}{x}\)=> ..................
Vậy Min B = ............... tại x = .......................