K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)

31 tháng 7 2019

<=>\(\left(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\right)^2=\left(\sqrt{2\left(\sqrt{2}-1\right)}\right)^2\)

<=>\(\sqrt{2}+1+\sqrt{2}-1-2\left(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)=2\left(\sqrt{2}-1\right)\)

<=>\(2\sqrt{2}-2=2\sqrt{2}-2\left(dpcm\right)\)

¬¬¬¬¬¬hoc tot ¬¬¬¬¬¬¬

26 tháng 5 2021

Ta có

 \(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right).\left(a+c\right)\\ Cmtt:b^2+1=\left(b+a\right).\left(b+c\right)\\ c^2+1=\left(c+a\right).\left(c+b\right)\)

Nên

 \(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\\ =\dfrac{\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{\left(c-a\right)}{\left(b+c\right)\left(b+a\right)}+\dfrac{\left(a-b\right)}{\left(c+a\right)\left(c+b\right)}\\ =\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =0\)

 

26 tháng 5 2021

\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\)

\(=\dfrac{b-c}{a^2+ab+bc+ac}+\dfrac{c-a}{b^2+ab+bc+ca}+\dfrac{a-b}{c^2+ab+bc+ca}\)

\(=\dfrac{b-c}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{c-a}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{a-b}{c\left(c+a\right)+b\left(a+c\right)}\)

\(=\dfrac{b-c}{\left(a+c\right)\left(a+b\right)}+\dfrac{c-a}{\left(b+c\right)\left(a+b\right)}+\dfrac{a-b}{\left(b+c\right)\left(a+c\right)}\)

\(=\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(a+c\right)+\left(a-b\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\) 

27 tháng 5 2016

Nửa chu vi hình chữ nhật là

400:2=200( m)

Chiều dài là

(200+60):2=130( m)

Chiều rộng là

200-130=70( m)

Đáp số...............................

27 tháng 5 2016

Chiều dài 130 m

Chiều rộng 70 m

10 tháng 9 2021

Kẻ OM vuông óc với CD 

Vì CD là 1 dây của (O)

=> M là trung điểm của CD 

=> MC = MD
Có: AH // BK (cùng vuông góc với CD)

=> AHKB là Hình thang

Lại có: OM vuông góc với CD; O là trung điểm của AB

=> M là trung điểm của HK

=> MH = MK

Có: \(\left\{{}\begin{matrix}HD+MD=HM\\MC+CK=MK\end{matrix}\right.\)

Mà: MH = MK (cmt) và MD = MC (cmt)

=> HD = CK

b: Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:

2x=-x+3

\(\Leftrightarrow3x=3\)

hay x=1

Thay x=1 vào y=2x, ta được:

\(y=2\cdot1=2\)

Vậy: \(A\left(1;2\right)\)

Thay y=0 vào \(\left(d2\right)\), ta được:

\(-x+3=0\)

hay x=3

Vậy: \(B\left(3;0\right)\)

\(AB=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(OA=\sqrt{\left(0-1\right)^2+\left(0-2\right)^2}=\sqrt{5}\)

\(OB=\sqrt{\left(0-3\right)^2}=3\)

\(P=\dfrac{AB+OA+AB}{2}=\dfrac{3+2\sqrt{2}+\sqrt{5}}{2}\)

\(S=\sqrt{P\cdot\left(P-OA\right)\left(P-OB\right)\left(P-AB\right)}=3\left(đvdt\right)\)

28 tháng 10 2015

câu này easy có ob^2+oe^2=6,25 và od^2+oc^2=25 mà od=1/2ob;oc=2oe =>oe=2,5 và ob=0 dễ chứng minh nốt bc=5

28 tháng 10 2015

bạn còn nhớ công thức trung tuyến không, sử dụng cái đó nhé, dùng phương pháp diện tích, suy nghĩ thử xem =))))