Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ĐK \(x\ge0\)
\(3x-7\sqrt{x}+4=0\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=\frac{4}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}\left(tm\right)}}\)
b. ĐK \(x\ge2\)
\(\Leftrightarrow\sqrt{x+1}.\sqrt{x-1}=\sqrt{x+3}.\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x^2-1}=\sqrt{x^2+x-6}\)
\(\Leftrightarrow x^2-1=x^2-x+6\Leftrightarrow x=5\left(tm\right)\)
Các câu còn lại tương tự
a ; \(3x-7\sqrt{x}+4=0
\)
\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
từ đó suy ra x
Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)
Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)
- Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
- Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).
Từ điều kiện : Với \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\);
\(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>0\)
Do đó pt (1) vô nghiệm.
Vậy pt ban đầu vô nghiệm.
Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)
Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)
- Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
- Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1). So sánh từ điều kiện : Với mọi \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\), \(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>\)với mọi x
Do đó pt (1) vô nghiệm.
Vậy pt ban đầu vô nghiệm.
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)
Chúc bạn học tốt !!!
a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)
ĐKXĐ : \(x\inℝ\)
\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)
\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)
\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)
\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất x = 0
\(\sqrt{x+1+\sqrt{x+\dfrac{3}{4}}}=x+1\)
\(\Leftrightarrow\sqrt{\left(x+\dfrac{3}{4}\right)+\sqrt{x+\dfrac{3}{4}}+\dfrac{1}{4}}=x+1\)
\(\Leftrightarrow\left|\sqrt{x+\dfrac{3}{4}}+\dfrac{1}{2}\right|=x+1\)
\(\Leftrightarrow\sqrt{x+\dfrac{3}{4}}+\dfrac{1}{2}=x+1\) (do \(\sqrt{x+\dfrac{3}{4}}+\dfrac{1}{2}>0\))
\(\Leftrightarrow\sqrt{x+\dfrac{3}{4}}=x+\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}\ge0\\\left(x+\dfrac{1}{2}\right)^2=x+\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x^2+x+\dfrac{1}{4}=x+\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x^2-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\\left(x-\dfrac{\sqrt{2}}{2}\right)\left(x+\dfrac{\sqrt{2}}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{\sqrt{2}}{2}\left(nhận\right)\\x=\dfrac{-\sqrt{2}}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\sqrt{2}}{2}\)
- Vậy phương trình có nghiệm duy nhất là \(x=\dfrac{\sqrt{2}}{2}\)