Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn cho mình hỏi là tại sao mình bị mất phần bạn bè và phần tin nhắn tren OLM vậy hả các bạn ?
\(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)=4x^2\)
\(pt\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)=4x^2\)
Dễ thấy x=0 ko là nghiệm chia 2 vế cho x2
\(\left(x+14+\frac{24}{x}\right)\left(x+11+\frac{24}{x}\right)=4\)
Đặt \(x+\frac{24}{x}=t\) thì ta có:
\(\Rightarrow\left(t+14\right)\left(t+11\right)=4\)
\(\Leftrightarrow t^2+25t+154=4\Leftrightarrow t^2+25t+150=0\)
\(\Leftrightarrow\left(t+10\right)\left(t+15\right)=0\)\(\Rightarrow\orbr{\begin{cases}t=-10\\t=-15\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{24}{x}=-10\\x+\frac{24}{x}=-15\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x+\frac{24}{x}+10=0\\x+\frac{24}{x}+15=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+10x+24=0\\x^2+15x+24=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-4;x=-6\\x=\frac{-15\pm\sqrt{129}}{2}\end{cases}}\)
a)\(x^3+x^2+x=-\dfrac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)
\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)
\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2-12x+8=0\)
\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow4x^3=\left(x-2\right)^3\)
\(\Leftrightarrow\sqrt[3]{4}x=x-2\)
\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)
Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc
Icon này này,mấy người đánh máy nhanh quá làm toi phải bỏ đi mấy bài :), mà mấy bài dài vc chứ ngắn gì đâu
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
ĐKXD phức tạp nên ko tìm ngay
Đặt \(x^2=t>0\Rightarrow\sqrt{12-\dfrac{3}{t}}+\sqrt{4t-\dfrac{3}{t}}=4t\)
Đặt \(\sqrt{4t-\dfrac{3}{t}}=a\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{t}=4t-a^2\\3=4t^2-ta^2\end{matrix}\right.\)
\(\Rightarrow\sqrt{4\left(4t^2-ta^2\right)-\left(4t-a^2\right)}+a=4t\)
\(\Rightarrow\sqrt{16t^2-4ta^2-4t+a^2}=4t-a\)
\(\Rightarrow16t^2-4ta^2-4t+a^2=\left(4t-a\right)^2\)
\(\Rightarrow16t^2-4ta^2-4t+a^2=16t^2-8ta+a^2\)
\(\Rightarrow4ta^2-8ta+4t=0\)
\(\Rightarrow4t\left(a-1\right)^2=0\Rightarrow\left[{}\begin{matrix}t=0\left(loại\right)\\a=1\end{matrix}\right.\)
\(\Rightarrow\sqrt{4t-\dfrac{3}{t}}=1\Rightarrow4t^2-t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{3}{4}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Thử lại 2 nghiệm vào pt ban đầu đều thỏa mãn
Tham khảo:
Giải phương trình: \(\sqrt{12-\dfrac{3}{x^2}}+\sqrt{4x^2-\dfrac{3}{x^2}}=4x^2\) - Hoc24
Cho mà thầy ơi cho em hỏi là cái đề đó có sai đề không ạ.
Em nghị đó là 12x ạ
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
\(\sqrt{x-3}+\sqrt{4x-12}=6\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}+2\sqrt{x-3}=6\)
\(\Leftrightarrow3\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\Leftrightarrow x=7\left(tm\right)\)
\(\sqrt{x-3}+\sqrt{4x-12}=6\)đk : x >= 3
\(\Leftrightarrow\sqrt{x-3}+2\sqrt{x-3}=6\Leftrightarrow3\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\Leftrightarrow x=7\)
bài dễ quá ; làm ny mik đi ; mik giải cho :v
(x+2)(x+3)(x+8)(x+12)=4x2
Ta nhóm như sau: [(x+2)(x+12)][(x+3)(x+8)]=4x2
<=> (x2 + 14x + 24)(x2 + 11x +24) = 4x2
Vì x = 0 , không phải nghiệm của pt nên chia cả hai vế của pt cho x2 \(\ne\) 0, ta có:
\(\left(x+14+\frac{24}{x}\right)\left(x+11+\frac{24}{x}\right)=4\)
0, ta có:
Đặt: \(x+\frac{24}{x}=y\)ta có: (y+14)(y+11)-4=4
<=> y2 + 24y+150 = 0
Giải pt ta được y1 = -10 ; y2 = -15 ⇒\(\orbr{\begin{cases}x^2+10x+24=0\\x^2+15x+24=0\end{cases}}\)
Pt có 4 nghiệm x1 = -4 ; x2 = -6 ; x3,4 = \(\frac{-15\pm\sqrt{129}}{2}\)