Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-2=0\Leftrightarrow x=2\)
b) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
e) \(2x^2+5x+3=0\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
f) \(x^2-x-12=0\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Đặt \(x^2=t\ge0\) phương trình trở thành:
\(2t^2-5t+2=0\)
\(\Delta=25-4.2.2=9\Rightarrow\) phương trình có 2 nghiệm:
\(t_1=\dfrac{5+3}{4}=2\) ; \(t_2=\dfrac{5-3}{4}=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
a, 2x2+5x-3=0
<=> 2x2+6x-x-3=0
<=> 2x(x+3)-(x+3)=0
<=> (x+3)(2x-1)=0
\(=>\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}=>\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
Vậy...
a, 2x2+5x-3=0
<=> 2x2+6x-x-3=0
<=> 2x(x+3)-(x+3)=0
<=>(x+3)(2x-1)=0
<=> \(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)
x.(2x^2+5x-3)=0
x.(2x^2-x+6x-3)=0
x.(2x-1).(x+3)=0
-> x=0 hoặc x=-3 hoặc x=1/2
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
Đặt x^2 = t ( t > = 0 )
\(2t^2-5t+2=0\)
\(\Delta=25-4.2.2=25-16=9>0\)
Vậy pt có 2 nghiệm pb
\(t=\dfrac{5-3}{4}=\dfrac{1}{2};t=\dfrac{5+3}{4}=2\left(tmđk\right)\)
\(\Rightarrow x=\pm\sqrt{\dfrac{1}{2}}=\pm\dfrac{\sqrt{2}}{2};x=\pm\sqrt{2}\)
Đặt \(x^2=y\) ; \(y\ge0\)
Pt trở thành:
\(2y^2-5y+2=0\)
\(\Delta=\left(-5\right)^2-4.2.2=25-16=9\)
\(\Rightarrow\) pt có 2 nghiệm
\(\left\{{}\begin{matrix}y=2\\y=\dfrac{1}{2}\end{matrix}\right.\) (tm)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\x=\pm\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)