K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

a) 3x - 2 = 2x-3

<=> 3x-2 -2x +3 = 0

<=> x +1 = 0

<=> x = -1

c) 3 - 4y+24+6y=y+27+3y

<=> 3 - 4y+24+6y - y - 27 - 3y = 0

<=> -2y =0

<=> y = 0

b,7-2x = 22 - 3x

<=> 7-2x -22 +3x = 0

<=> -15 +x = 0

<=> x = 15

d) x-12+4x = 25+2x-1

<=> x-12+4x -25-2x+1=0

<=> 3x -36 = 0

<=> 3x = 36

<=> x = 12

còn câu e bạn tự làm nha

\(a,3x-2=2x-3\)

\(3x-2x=-3+2\)

\(x=-1\)

Vậy pt cs nghiệm là  { -1 }

\(b,7-2x=22-3x\)

\(-2x+3x=22-7\)

\(x=15\)

Vậy pt cs nghiệm là { 15 }

bn lm nốt nha ... 

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

5 tháng 3 2020

a) \(3x-2=2x-3\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

b) \(3-4y+24+6y=y+27+3y\)

\(\Leftrightarrow-2y=0\Leftrightarrow y=0\)

5 tháng 3 2020

c) \(7-2x=22-3x\)

\(\Leftrightarrow x-15=0\)

\(\Leftrightarrow x=15\)

d) \(8x-3=5x+12\)

\(\Leftrightarrow3x-15=0\Leftrightarrow x=5\)

Baøi 1. Giải các phương trình sau bằng cách đưa về dạng ax + b = 0: 1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x 2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 +...
Đọc tiếp

Baøi 1. Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:

1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7

e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42

0
13 tháng 4 2017

a) 3x-2=2x-3

3x=2x-1

Bớt mỗi vế 2x

x=-1

b)3-4y+24+6y=y+27+3y

3-4y+6y=y+3+3y

3-4y+3y=y+3

<=> y=0

c.7-2x=22-3x

2x=15-3x

15=x

d.8x-3=5x+12

3x-3=12

3x=15

x=5

câu e hình như bạn thiếu đề

f)x+2x+3x-19=3x+5

6x-19=3x+5

3x-19=5

3x=24

<=>x=8

g)11=8x-3=5x-3+x

11=8x-3

11=6x-3

<=> x không tồn tại

h)4-2x+15=9x+4x-2x

4-2x+15=11x

<=> nghiệm trên có số thập phân vô hạn tuần hoàn nhé

T

13 tháng 4 2017

Ngập mặt ~ 

Mình làm 1;2 câu thôi. Các câu sau bạn làm tương tự nhé.

a/ 3x - 2 = 2x - 3

<=> 3x - 2 - 2x + 3 = 0

<=> x + 1               = 0

<=> x                    = -1

b/ 3 - 4y + 24 + 6y = y + 27 + 3y

<=> 3 - 4y + 24 + 6y - y - 27 - 3y = 0

<=> -2y                                        = 0

<=>   y                                         = 0

1 tháng 3 2020

\(a.3-4y+24+6y=y+27+3y\)

\(6y-4y-y-3y=27-24-3\)

\(-2y=0\Rightarrow y=0\)

\(b.5-\left(x-6\right)=4\left(3-2x\right)\)

\(5-x+6=12-8x\)

\(8x-x=12-6-5\)

\(7x=1\Rightarrow x=\frac{1}{7}\)

\(c.\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)

\(2x^2-3x+2x-3=2x^2+10x-x-5\)

\(\left(2x^2-2x^2\right)-\left(3x-2x+10x-x\right)=-5+3\)

\(-10x=-2\Rightarrow x=\frac{1}{5}\)

\(d.2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(2x\left(x^2+4x+4\right)-8x^2=\left(2x-4\right)\left(x^2+2x+4\right)\)

\(2x^3+8x^2+8x-8x^2=2x^3+4x^2+8x-4x^2-8x-16\)

\(\left(2x^3-2x^3\right)+\left(8x^2-8x^2-4x^2+4x^2\right)+\left(8x-8x+8x\right)=-16\)

\(8x=-16\Rightarrow x=-2\)

\(e.\left(x-3\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(x^2+4x-3x-12-6x+4=x^2-8x+16\)

\(\left(x^2-x^2\right)+\left(4x-3x-6x+8x\right)=16-4+12\)

\(3x=24\Rightarrow x=8\)

\(f.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x+1\right)\left(x-1\right)\)

\(x^3+1-2x=x\left(x^2-1\right)\)

\(\left(x^3-x^3\right)-\left(2x-x\right)=-1\)

\(-x=-1\Rightarrow x=1\)

1 tháng 3 2020
https://i.imgur.com/bITRbkX.jpg
Bài 1: Giải các phương trình sau: Câu 1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x 2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x...
Đọc tiếp

Bài 1: Giải các phương trình sau:

Câu 1.

a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7

e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42

4.a) (5x-2)/3=(5-3x)/2 b)(10x+3)/12=1+((6+8x)/9)

c)2(x+3/5)=5-(13/5+x) d)7/8x-5(x-9)=(20x+1,5)/6

e)(7x-1)/6+2x=(16-x)/5 f)4(0,5-1,5x)=-(5x-6)/3

g)(3x+2)/2-(3x+1)/6=5/3+2x h)(x+4)/5-(x+4)=x/3-(x-2)/2

i) (4x+3)/5-(6x-2)/7=(5x+4)/3+3 k)(5x+2)/6-(8x-1)/3=(4x+2)/5-5

m)(2x-1)/5-(x-2)/3=(x+7)/15 n)1/4(x+3)=3-1/2(x+1)-1/3(x+2)

Bài 2 Tìm giá trị của k sao cho:

a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c. Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

1

Bài 2:

a) Thay x=-2 vào phương trình 2x+k=x-1, ta được

2*(-2)+k=-2-1

⇔-4+k=-3

⇔k=-3-(-4)=-3+4=1

Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2

b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được

(2*2+1)*(9*2+2k)-5*(2+2)=40

⇔5*(18+2k)-20=40

⇔5*(18+2k)=40+20

⇔18+2k=12

⇔2k=12-18=-6

⇔k=-3

Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2

c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được

2*(2*1+1)+18=3*(1+2)*(2*1+k)

⇔2*3+18=3*3*(2+k)

⇔24=9*(2+k)

\(2+k=\frac{24}{9}=\frac{8}{3}\)

\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)

Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1