K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

a)2x(8x-1)2(4x-1)=9

\(\Leftrightarrow\) (64x2-16x+1)(8x2-2x)=9

\(\Leftrightarrow\) 512x4-256x3+40x2-2x=9

\(\Leftrightarrow\) 512x4-256x3+40x2-2x-9=0

\(\Leftrightarrow\) 512x4-128x3-64x2-128x3+32x2+16x+72x2-18x-9=0

\(\Leftrightarrow\) (512x4-128x3-64x2)-(128x3-32x2-16x)+(72x2-18x-9)=0

\(\Leftrightarrow\) 64x2(8x2-2x-1)-16x(8x2-2x-1)+9(8x2-2x-1)=0

\(\Leftrightarrow\) (64x2-16x+9)(8x2-2x-1)=0

\(\Leftrightarrow\) (64x2-16x+9)(8x2-4x+2x-1)=0

\(\Leftrightarrow\) (64x2-16x+9)(2x-1)(4x+1)=0

\(\Rightarrow\left\{{}\begin{matrix}2x-1=0\\4x+1=0\end{matrix}\right.\) (Vì 64x2-16x+9>0)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

25 tháng 1 2017

\(\Rightarrow\)\(\left[2x\left(4x+1\right)\right]\left(8x-1\right)^2=9\)

\(\Rightarrow\left(64x^2-16x+1\right)\left(8x^2-2x\right)=9\) (1)

đặt \(8x^2-2x=a\Rightarrow64x^2-16x=8a\)

từ đó (1)có dạng : (8a+1)a=9

\(\Rightarrow8a^2+a-9=0\)

\(\Rightarrow8a^2-8a+9a-9=0\)

\(\Rightarrow8a\left(a-1\right)+9\left(a-1\right)=0\)

\(\Rightarrow\left(8a+9\right)\left(a-1\right)=0\)

\(\left[\begin{matrix}8a+9=0\\a-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=\frac{-9}{8}\\a=1\end{matrix}\right.\)

từ đó thay vào tìm x

23 tháng 1 2017

a,2x(8x-1)2(4x-1)=9(1)

<=>(8x-2)(8x-1)2.x=9

<=>8x(8x-1)2(8x-2)=8.9=72(2)

Đặt 8x-1=y ,pt (2) trở thành (y+1)y2(y-1)=72 ....... tới đây tự giải

b, tương tự ý a ,nhan 4 vào (3x+2) ,nhân 6 vào (2x+3)

c, nhân 2 vào (x+1)

23 tháng 1 2017

thanks bạn nha!

1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)

\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)

\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)

=>-8x+8=0

hay x=1(nhận)

c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

5 tháng 11 2017

giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)

6 tháng 2 2019

a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)

\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)

Đặt a = \(8x^2+10x+3\)

\(\left(8a+1\right)a-9=0\)

\(\Leftrightarrow8a^2+a-9=0\)

\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)

mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)

\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)

7 tháng 2 2019

cảm ơn bạn còn mấy phần còn lại ạ

20 tháng 2 2018

\(\text{a) }x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow t^2-25=0\\ \Leftrightarrow\left(t+5\right)\left(t-5\right)=0\\ \Leftrightarrow\left(x^2+x-1+5\right)\left(x^2+x-1-5\right)=0\\ \Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-6\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)\left(x^2+3x-2x-6\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\left[\left(x^2+3x\right)-\left(2x+6\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\left[x\left(x+3\right)-2\left(x+3\right)\right]=0\\ \Leftrightarrow\left(x-2\right)\left(x+3\right)=0\left(\text{Vì }\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{2;-3\right\}\)

\(\text{b) }\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x^2-4x-7x+28\right)\left(x^2-5x-6x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)

Đặt \(x^2-11x+29=t\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1-1680=0\\ \Leftrightarrow t^2-1681=0\\ \Leftrightarrow\left(t+41\right)\left(t-41\right)=0\\ \Leftrightarrow\left(x^2-11x+29+41\right)\left(x^2-11x+29-41\right)=0\\ \Leftrightarrow\left(x^2-11x+70\right)\left(x^2-11x-12\right)=0\\ \Leftrightarrow\left(x^2-11x+\dfrac{121}{4}+\dfrac{159}{4}\right)\left(x^2-12x+x-12\right)=0\\ \Leftrightarrow\left[\left(x^2-11x+\dfrac{121}{4}\right)+\dfrac{159}{4}\right]\left[\left(x^2-12x\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left[\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\right]\left[x\left(x-12\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x-12\right)=0\left(\text{Vì }\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=12\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;12\right\}\)

\(\text{c) }\left(x+2\right)\left(x+3\right)\left(x-5\right)\left(x-6\right)=180\\ \Leftrightarrow\left(x^2+2x-5x-10\right)\left(x^2+3x-6x-18\right)=180\\ \Leftrightarrow\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\) Đặt \(x^2-3x-14=t\) \(\Leftrightarrow\left(t+4\right)\left(t-4\right)=180\\ \Leftrightarrow t^2-16-180=0\\ \Leftrightarrow t^2-196=0\\ \Leftrightarrow\left(t+14\right)\left(t-14\right)=0\\ \Leftrightarrow\left(x^2-3x-14+14\right)\left(x^2-3x-14-14\right)=0\\ \Leftrightarrow\left(x^2-3x\right)\left(x^2-3x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2-7x+4x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left[x\left(x-7\right)+4\left(x-7\right)\right]=0\\ \Leftrightarrow x\left(x-3\right)\left(x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+4=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-4\\x=7\end{matrix}\right.\) Vậy tập nghiệm phương trình là \(S=\left\{0;3;-4;7\right\}\)
9 tháng 2 2017

Làm cho bạn 1 con thôi dài quá trôi hết màn hình:

c) có vẻ khó nhất (con khác tương tự)

đặt 2x+2=t=> x+1=t/2

\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)

\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)

<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)

30 tháng 4 2019

a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9

<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4

<=> (8x+5)(8x+6)(8x+4) = 72

Đặt 8x+5 = y ta có phương trình tương đương :

y ( y -1 ) ( y+1) = 72

......................

b, Tương tự phần a nhé

30 tháng 4 2019

c, x^3 + 5x^2 + 5x + 2=0 

<=> x^3 + 1 + 5x^2 + 5x + 1 = 0

<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0

<=> (x+1 ) ( x^2+4x + 1) + 1 = 0