K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

\(4x^4-3x^2-1=0\)

\(\Leftrightarrow\left(4x^4-4x^2\right)+\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(4x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(4x^2+1\right)=0\)

\(2x^2-5x+2=0\)

\(\Leftrightarrow\left(2x^2-4x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\)

Mình giải phần mấu chốt rồi đó

Còn lại tự giải nhé

8 tháng 2 2018

CÂU 2:

       \(2x^2-5x+2=0\)

\(\Leftrightarrow\)\(2x^2-4x-x+2=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0,5\\x=2\end{cases}}\)

Vậy...

a, \(x^2-49x-50=0\Leftrightarrow\left(x-1\right)\left(x+50\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-50\end{cases}}\)

b, \(3x^2-7x-10=0\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\Leftrightarrow\left(3x-10\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=10\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}}\)

c, \(x^2-4x-5=0\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

d, \(x^2+2x-3=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

e, \(x^2+2020x-2021=0\)

=> vô nghiệm 

f, \(x^2+9x-10=0\Leftrightarrow\left(x-1\right)\left(x+10\right)\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}}\)

g, \(-5x^2+4x+1=0\Leftrightarrow5x^2+x-5x-1=0\Leftrightarrow x\left(5x+1\right)-1\left(5x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)

h, \(4x^2+3x-7=0\Leftrightarrow x\left(4x+7\right)-1\left(4x+7\right)=0\Leftrightarrow\left(x-1\right)\left(4x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{7}{4}\end{cases}}\)

21 tháng 4 2020

a) (x-50)(x+1)=0

<=>x=50 hoặc x=1

b) (x+1)(x-10/3)=0

<=>x=-1 hoặc x=10/3

c)  (x-5)(x+1)=0

<=>x=5 hoặc x=-1

d)  (x+3)(x-1)=0

<=>x=-3 hoặc x=1

e) (x-1)(x+2021)=0

<=>x=1 hoặc x=-2021

f) (x-1)(x+10)=0

<=> x=1 hoặc x=-10

g) (x+1/5)(x-1)=0

<=>x=1 hoặc x=-1/5

h) (x-1)(x+7/4)=0

<=> x=1 hoặc x=-7/4

Học tốt. tk vs ạ

NV
2 tháng 3 2020

a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)

b. \(\Leftrightarrow x^3+x+3x^2+3=0\)

\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)

c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)

NV
2 tháng 3 2020

d.

\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)

e.

\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)

6 tháng 4 2017

a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(3y^2-12y+9=0\)

\(\Leftrightarrow y^2-4y+3=0\)

Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)

\(\Rightarrow y_1=1\) (TM \(y\ge0\))

\(y_2=\dfrac{3}{1}=3\)

Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)

Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)

Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm

b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(2y^2+3y-2=0\)

\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )

\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )

Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)

Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm

c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(y^2+5y+1=0\)

\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))

\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))

Vậy pt đã cho vô nghiệm

10 tháng 4 2017

phần b sai rồi

b, 2x4+3x2-2=0

Đặt x2=t (t>0) ta có

2t2 + 3t-2=0

\(\Delta\)=32-4.2.(-2)=25 \(\Rightarrow\)\(\sqrt{\Delta}\)=5

\(\Delta\)>0 nên PT có 2 nghiệm phân biệt

t1=\(\dfrac{-3+5}{2.2}=\dfrac{1}{2}\) (thỏa mãn)

t2=\(\dfrac{-3-5}{2.2}=-2\) (loại)

với t1=\(\dfrac{1}{2}\) => x2=\(\dfrac{1}{2}\) => x1=\(\pm\sqrt{\dfrac{1}{2}}\) =>x1=\(\pm\dfrac{\sqrt{2}}{2}\)

vậy PT đã cho có 2 nghiệm phân biệt là x1=\(-\dfrac{\sqrt{2}}{2}\) ;x2=\(\dfrac{\sqrt{2}}{2}\)

25 tháng 2 2019

\(a,4x^2-25=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

\(b,2x^2+9x=0\)

\(\Leftrightarrow x\left(2x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{9}{2}\end{matrix}\right.\)

\(c,x^2+x-30=0\)

\(\Leftrightarrow x^2+6x-5x-30=0\)

\(\Leftrightarrow x\left(x+6\right)-5\left(x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

\(d,2x^2-3x-5=0\)

\(\Leftrightarrow2x^2-5x+2x-5=0\)

\(\Leftrightarrow x\left(2x-5\right)+\left(2x-5\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)

8 tháng 2 2018

\(4x^4-3x^2-1=0\)

\(4x^4-4x^2+x^2-1=0\)

\(4x^2.\left(x^2-1\right)+\left(x^2-1\right)=0\)

\(\left(4x^2+1\right)\left(x^2-1\right)=0\)

\(\Rightarrow x^2-1=0\)  vì \(4x^2+1>0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

\(2x^2-5x+2=0\)

\(x^2-\frac{5}{2}x+1=0\)

\(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+1=0\)

\(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}=0\)

\(\left(x+\frac{5}{4}-\frac{3}{4}\right)\left(x+\frac{5}{4}+\frac{3}{4}\right)=0\)

\(\left(x+\frac{1}{2}\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=-2\end{cases}}\)

8 tháng 2 2018
Câu này mình viết thiếu đề câu 2 nha Giải phương trình: Câu 1: 4x4 - 3x2 - 1 = 0 Câu 2: 2x2 - 5x + 2 = 0 Đề đúng đây ạ