Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả ba phương trình trên đều là phương trình trùng phương.
a) 3 x 4 – 12 x 2 + 9 = 0 ( 1 )
Đặt x 2 = t , t ≥ 0.
(1) trở thành: 3 t 2 – 12 t + 9 = 0 ( 2 )
Giải (2):
Có a = 3; b = -12; c = 9
⇒ a + b + c = 0
⇒ (2) có hai nghiệm t 1 = 1 v à t 2 = 3 .
Cả hai nghiệm đều thỏa mãn điều kiện.
+ t = 3 ⇒ x 2 = 3 ⇒ x = ± 3 + t = 1 ⇒ x 2 = 1 ⇒ x = ± 1
Vậy phương trình có tập nghiệm
b) 2 x 4 + 3 x 2 – 2 = 0 ( 1 )
Đặt x 2 = t , t ≥ 0.
(1) trở thành: 2 t 2 + 3 t – 2 = 0 ( 2 )
Giải (2) :
Có a = 2 ; b = 3 ; c = -2
⇒ Δ = 3 2 – 4 . 2 . ( - 2 ) = 25 > 0
⇒ (2) có hai nghiệm
t 1 = - 2 < 0 nên loại.
Vậy phương trình có tập nghiệm
c) x 4 + 5 x 2 + 1 = 0 ( 1 )
Đặt x 2 = t , t > 0 .
(1) trở thành: t 2 + 5 t + 1 = 0 ( 2 )
Giải (2):
Có a = 1; b = 5; c = 1
⇒ Δ = 5 2 – 4 . 1 . 1 = 21 > 0
⇒ Phương trình có hai nghiệm:
Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
a) x 4 – 5 x 2 + 4 = 0 ( 1 )
Đặt x 2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t 2 – 5 t + 4 = 0 ( 2 )
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t 1 = 1 ; t 2 = c / a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x 2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x 2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
b) 2 x 4 – 3 x 2 – 2 = 0 ; ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 2 t 2 – 3 t – 2 = 0 ( 2 )
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Δ = ( - 3 ) 2 - 4 . 2 . ( - 2 ) = 25 > 0
⇒ Phương trình có hai nghiệm
Chỉ có giá trị t 1 = 2 thỏa mãn điều kiện.
+ Với t = 2 ⇒ x 2 = 2 ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
c) 3 x 4 + 10 x 2 + 3 = 0 ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 3 t 2 + 10 t + 3 = 0 ( 2 )
Giải (2) : Có a = 3; b' = 5; c = 3
⇒ Δ ’ = 5 2 – 3 . 3 = 16 > 0
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Cả ba phương trình trên đều là phương trình trùng phương.
3x4 – 12x2 + 9 = 0 (1)
Đặt x2 = t, t ≥ 0.
(1) trở thành: 3t2 – 12t + 9 = 0 (2)
Giải (2):
Có a = 3; b = -12; c = 9
⇒ a + b + c = 0
⇒ (2) có hai nghiệm t1 = 1 và t2 = 3.
Cả hai nghiệm đều thỏa mãn điều kiện.
+ t = 3 ⇒ x2 = 3 ⇒ x = ±√3.
+ t = 1 ⇒ x2 = 1 ⇒ x = ±1.
Vậy phương trình có tập nghiệm
2x4 + 3x2 – 2 = 0 (1)
Đặt x2 = t, t ≥ 0.
(1) trở thành: 2t2 + 3t – 2 = 0 (2)
Giải (2) :
Có a = 2 ; b = 3 ; c = -2
⇒ Δ = 32 – 4.2.(-2) = 25 > 0
⇒ (2) có hai nghiệm
t1 = -2 < 0 nên loại.
Vậy phương trình có tập nghiệm
2x4 – 3x2 – 2 = 0; (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 2t2 – 3t – 2 = 0 (2)
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Δ = (-3)2 - 4.2.(-2) = 25 > 0
⇒ Phương trình có hai nghiệm
Chỉ có giá trị t1 = 2 thỏa mãn điều kiện.
+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
x4 + 5x2 + 1 = 0 (1)
Đặt x2 = t, t > 0.
(1) trở thành: t2 + 5t + 1 = 0 (2)
Giải (2):
Có a = 1; b = 5; c = 1
⇒ Δ = 52 – 4.1.1 = 21 > 0
⇒ Phương trình có hai nghiệm:
Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
a) Phương trình bậc hai: 7 x 2 – 2 x + 3 = 0
Có: a = 7; b = -2; c = 3; Δ = b 2 – 4 a c = ( - 2 ) 2 – 4 . 7 . 3 = - 80 < 0
Vậy phương trình vô nghiệm.
b) Phương trình bậc hai
Có: a = 5; b = 2√10; c = 2; Δ = b 2 – 4 a c = ( 2 √ 10 ) 2 – 4 . 2 . 5 = 0
Vậy phương trình có nghiệm kép.
c) Phương trình bậc hai
Vậy phương trình có hai nghiệm phân biệt.
d) Phương trình bậc hai 1 , 7 x 2 – 1 , 2 x – 2 , 1 = 0
Có: a = 1,7; b = -1,2; c = -2,1;
Δ = b 2 – 4 a c = ( - 1 , 2 ) 2 – 4 . 1 , 7 . ( - 2 , 1 ) = 15 , 72 > 0
Vậy phương trình có hai nghiệm phân biệt.
Kiến thức áp dụng
Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.
+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt
+ Nếu Δ = 0, phương trình có nghiệm kép ;
+ Nếu Δ < 0, phương trình vô nghiệm.
x4 – 5x2 + 4 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
a) 5 x 2 – x + 2 = 0 ;
a = 5; b = -1; c = 2
Δ = b 2 - 4 a c = ( - 1 ) 2 - 4 . 5 . 2
= 1 - 40 = -39 < 0
Vậy phương trình trên vô nghiệm.
b) 4 x 2 – 4 x + 1 = 0 ;
a = 4; b = -4; c = 1
Δ = b 2 - 4 a c = ( - 4 ) 2 - 4 . 4 . 1 = 16 - 16 = 0
⇒ phương trình có nghiệm kép
x = (-b)/2a = (-(-4))/2.4 = 1/2
Vậy phương trình có nghiệm duy nhất x = 1/2
c) - 3 x 2 + x + 5 = 0
a = -3; b = 1; c = 5
Δ = b 2 - 4 a c = 12 - 4 . ( - 3 ) . 5 = 1 + 60 = 61 > 0
⇒ Do Δ >0 nên áp dụng công thức nghiệm, phương trình có 2 nghiệm phân biệt
x 1 = ( 1 - √ 61 ) / 6 ; x 2 = ( 1 + √ 61 ) / 6
a) Phương trình bậc hai 4 x 2 + 4 x + 1 = 0
Có a = 4; b’ = 2; c = 1; Δ ’ = ( b ’ ) 2 – a c = 2 2 – 4 . 1 = 0
Phương trình có nghiệm kép là:
b) Phương trình 13852 x 2 – 14 x + 1 = 0
Có a = 13852; b’ = -7; c = 1;
Δ ’ = ( b ’ ) 2 – a c = ( - 7 ) 2 – 13852 . 1 = - 13803 < 0
Vậy phương trình vô nghiệm.
c) Phương trình bậc hai 5 x 2 – 6 x + 1 = 0
Có: a = 5; b’ = -3; c = 1.; Δ ’ = ( b ’ ) 2 – a c = ( - 3 ) 2 – 5 . 1 = 4 > 0
Phương trình có hai nghiệm phân biệt:
d) Phương trình bậc hai:
Phương trình có hai nghiệm phân biệt :
Kiến thức áp dụng
Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.
+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt
+ Nếu Δ = 0, phương trình có nghiệm kép ;
+ Nếu Δ < 0, phương trình vô nghiệm.
a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(3y^2-12y+9=0\)
\(\Leftrightarrow y^2-4y+3=0\)
Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow y_1=1\) (TM \(y\ge0\))
\(y_2=\dfrac{3}{1}=3\)
Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)
Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)
Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm
b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(2y^2+3y-2=0\)
\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )
\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )
Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)
Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm
c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(y^2+5y+1=0\)
\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))
\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))
Vậy pt đã cho vô nghiệm
phần b sai rồi
b, 2x4+3x2-2=0
Đặt x2=t (t>0) ta có
2t2 + 3t-2=0
\(\Delta\)=32-4.2.(-2)=25 \(\Rightarrow\)\(\sqrt{\Delta}\)=5
vì \(\Delta\)>0 nên PT có 2 nghiệm phân biệt
t1=\(\dfrac{-3+5}{2.2}=\dfrac{1}{2}\) (thỏa mãn)
t2=\(\dfrac{-3-5}{2.2}=-2\) (loại)
với t1=\(\dfrac{1}{2}\) => x2=\(\dfrac{1}{2}\) => x1=\(\pm\sqrt{\dfrac{1}{2}}\) =>x1=\(\pm\dfrac{\sqrt{2}}{2}\)
vậy PT đã cho có 2 nghiệm phân biệt là x1=\(-\dfrac{\sqrt{2}}{2}\) ;x2=\(\dfrac{\sqrt{2}}{2}\)