K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

16. 2 x  + 4. 2 x  = 5. 5 x  + 3. 5 x

⇔ 20. 2 x  = 8. 5 x  ⇔  2 / 5 x  =  2 / 5 1  ⇔ x = 1

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :

\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)

Ta có :

\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x

Do đó \(f\left(x\right)\) đồng biến trên R

Mặt khác

f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình

b) Phương trình tương đương với

\(2^x\left(2-2^x\right)=x-1\)

Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình

- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)\(x-1\)

phương trình vô nghiệm

- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)\(x-1\)

phương trình đã cho có 1 nghiệm duy nhất là x=1

29 tháng 3 2016

d) Đưa 2 vế về cùng cơ số 2, ta được

\(2^{-3}.2^{4x-6}=\left(2^{\frac{-5}{2}}\right)^x\) hay \(2^{4x-9}=2^{\frac{5}{2}x}\)

Do đó :

\(4x-9=\frac{5}{2}x\Leftrightarrow\frac{3}{2}x=9\Leftrightarrow x=6\)

Vậy phương trình đã cho chỉ có 1 nghiệm x=6

29 tháng 3 2016

c) Phương trình đã cho tương đương với :

\(\frac{1}{4}.4^x+16.4^x=10\Leftrightarrow\frac{33}{2}.4^x=10\Leftrightarrow4^x=\frac{20}{33}\Leftrightarrow x=\log_4\frac{20}{33}\)

Vậy nghiệm của phương trình là \(x=\log_4\frac{20}{33}\)

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)

29 tháng 3 2016

Biến đổi phương trình về dạng :

\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)

Nhận thấy \(x=1\) là nghiệm 

Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)

Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.

Đáp số : x=1

 

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

Lấy logarit cơ số 10 hai vế ta có :

\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)

\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)

\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)

\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)

\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)

Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)

20 tháng 5 2016

\(5^{1+x^2}-5^{1-x^2}>24\Leftrightarrow5\times5^{x^2}-\frac{5}{5^{x^2}}>24\) (1)

Đặt \(t=5^{x^2}\), dk: \(t>0\)

\(\left(1\right)\Leftrightarrow5t-\frac{5}{t}>24\Leftrightarrow5t^2-24t-5>0\Leftrightarrow\left[\begin{array}{nghiempt}t< \frac{-1}{5}\left(loai\right)\\t>5\end{array}\right.\)\(\Leftrightarrow5^{x^2}>5\Leftrightarrow x^2>1\Leftrightarrow\left[\begin{array}{nghiempt}x< -1\\x>1\end{array}\right.\)

20 tháng 5 2016

cảm ơn nhá