K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2023

\(\left|x-2\right|=2x+3\) `(1)`

Nếu `x-2 >= 0<=>x>= 2` thì phương trình `(1)` trở thành :

`x-2=2x+3`

`<=> x-2x=3+2`

`<=> -x=5`

`<=>x=-5` ( không thỏa mãn )

Nếu `x-2<0<=>x<2` thì phương trình `(1)` trở thành :

`-(x-2)=2x+3`

`<=> -x+2=2x+3`

`<=>-x-2x=3-2`

`<=> -3x=1`

`<=> x= -1/3` ( thỏa mãn )

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{1}{3}\right\}\)

__

\(\left|5-x\right|=x+4\) `(1)`

Nếu `5-x>= 0<=> x >=5` thì phương trình `(1)` trở thành :

`5-x=x+4`

`<=> -x-x=4-5`

`<=> -2x=-1`

`<=> x=1/2` ( không thỏa mãn )

Nếu `5-x<0<=>x<0` thì phương trình `(1)` trở thành :

`-(5-x)=x+4`

`<=>-5+x=x+4`

`<=> x-x=4+5`

`<=> 0=9` ( không thỏa mãn )

Vậy phương trình vô nghiệm

 

 

1 tháng 6 2023

Trình bày sạch đẹp , nhìn yêu thế <3

a: =>x+3=x-2 hoặc x+3=2-x

=>2x=-1

=>x=-1/2

b: =>3x+7=x-2 hoặc 3x+7=-x+2

=>2x=-9 hoặc 4x=-5

=>x=-5/4 hoặc x=-9/2

c: =>|3x-4|=|2x-5|

=>3x-4=2x-5 hoặc 3x-4=-2x+5

=>x=-1 hoặc x=9/5

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

b)

ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)

Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Leftrightarrow2x^2-14=2x^2+x-10\)

\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(nhận)

Vậy: S={-4}

1 tháng 6 2023

\(\left|x-2\right|=\left|2x-3\right|\)

Nếu : \(\left\{{}\begin{matrix}2x-3\ge0\Leftrightarrow2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\\2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\x-2=-\left(2x-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-3+2\\x-2=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-1\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

__

\(\left|5-x\right|=\left|x+2\right|\)

Nếu : \(\left\{{}\begin{matrix}x+2\ge0\Leftrightarrow x\ge-2\\x+2< 0\Leftrightarrow x< -2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5-x=x+2\\5-x=-\left(x+2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-5\\5-x=-x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\0=-7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(ktm\right)\\0=-7\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x=2x^3-16\)

<=>\(8x=-16\)

<=>\(x=-2\)

i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)

<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(6x^2-2x-10=0\)

<=>\(3x^2-x-5=0\)

<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>\(x=\dfrac{1}{5}\)

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)

<=>\(8x=-16\)

<=>x=-2

i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(9x+6=0\)

<=>x=\(\dfrac{-2}{3}\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>x=\(\dfrac{1}{5}\)

14 tháng 1 2022

\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)

\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)

\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)

\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)

\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)

\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)

14 tháng 1 2022

\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)

\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)

\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)

a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

=>x+3=0 hoặc x-4=0

=>x=-3 hoặc x=4

e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)

8 tháng 2 2022

a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)

c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e, tương tự d 

f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)

a: Ta có: \(3x-\left(3x+2\right)=x+3\)

\(\Leftrightarrow x+3=-2\)

hay x=-5

b: Ta có: \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)

\(\Leftrightarrow15x-3+8x-4=18x\)

\(\Leftrightarrow5x=7\)

hay \(x=\dfrac{7}{5}\)

1 tháng 6 2023

\(\left|x\right|=x+1\)

Ta có : \(\left\{{}\begin{matrix}x\ge0\\x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x+1\\-x=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0=1\\-2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0=1\left(ktm\right)\\x=-\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{1}{2}\right\}\)

__

\(\left|3x\right|=x-2\)

Ta có : \(\left\{{}\begin{matrix}3x\ge0\Leftrightarrow x\ge0\\3x< 0\Leftrightarrow x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=x-2\\-3x=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-2\\-4x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\left(ktm\right)\)

Vâỵ phương trình vô nghiệm

__

\(\left|-2x\right|=3x-4\)

Ta có : \(\left\{{}\begin{matrix}-2x\ge0\Leftrightarrow x\ge0\\-2x< 0\Leftrightarrow x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=3x-4\\-\left(-2x\right)=3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-5x=-4\\2x=3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\-x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)