Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)
\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)
Làm mẫu hai câu a, b thôi nha.
a, \(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}y\\\sqrt{3}.\sqrt{3}y+2y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}y\\5y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}+3}{5}\\y=\dfrac{1+\sqrt{3}}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\approx0,95\\y\approx0,55\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}\left(\sqrt{2}-\sqrt{5}y\right)-\sqrt{5}y=1\\x=\sqrt{2}-\sqrt{5}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-\sqrt{5}\left(\sqrt{2}+1\right)y=1\\x=\sqrt{2}-\sqrt{5}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{2}-1}{\sqrt{5}}\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\approx0,19\\x=1\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-3y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
Lấy phương trình dưới trừ phương trình trên thu được: \(5y=1+\sqrt{3}\Rightarrow y=\dfrac{1+\sqrt{3}}{5}\Rightarrow x=\sqrt{3}y=\dfrac{3+\sqrt{3}}{5}\)
b) Cộng hai phương trình lại với nhau thu được:
\(\left(\sqrt{2}+1\right)x=\sqrt{2}+1\Leftrightarrow x=1\Rightarrow y=\dfrac{\sqrt{2}-1}{\sqrt{5}}\)
c) \(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
Lấy phương trình trên trừ phương trình dưới:
\(\left(\sqrt{2}-1\right)x=0\Leftrightarrow x=0\Rightarrow y=\dfrac{2-x}{\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
d) Hướng dẫn. Nhân phương trình đầu với \(\sqrt{2}\) rồi lấy phương trình thu được trừ phương trình dưới.
Đặt m = 1 / x - 3 và n = 1/y - 4
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2
....Bạn tự giải tiếp nhé
\(\int^{3y-2x=1}_{7y-5x=1}\Leftrightarrow\int^{3y-2x=1}_{7y-5x=3y-2x}\Leftrightarrow\int^{3y-2x=1}_{4y=3x}\Leftrightarrow\int^{\frac{9}{4}x-2x=1}_{y=\frac{3}{4}x}\Leftrightarrow\int^{x=4}_{y=3}\)
a) Từ phương trình thứ nhất ta có x = -y.
Thế vào x trong phương trình thứ hai ta được:
-y . + 3y = 1 - ⇔ -2y = 1 -
⇔ y =
Từ đó: x - . =
Vậy hệ phương trình có nghiệm: (x, y) =
b) Từ phương trình thứ hai ta có y = 4 - 2 - 4x.
Thế vào y trong phương trình thứ hai được
(2 - )x - 3(4 - 2 - 4x) = 2 + 5
⇔ (14 - )x = 14 - ⇔ x = 1
Từ đó y = 4 - 2 - 4 . 1 = -2.
Vậy hệ phương trình có nghiệm:
(x; y) = (1; -2)
a) Từ phương trình thứ nhất ta có x = -y.
Thế vào x trong phương trình thứ hai ta được:
-y . + 3y = 1 - ⇔ -2y = 1 -
⇔ y =
Từ đó: x - . =
Vậy hệ phương trình có nghiệm: (x, y) =
b) Từ phương trình thứ hai ta có y = 4 - 2 - 4x.
Thế vào y trong phương trình thứ hai được
(2 - )x - 3(4 - 2 - 4x) = 2 + 5
⇔ (14 - )x = 14 - ⇔ x = 1
\(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)
\(\hept{\begin{cases}x=y+3\\3x-4y=2\end{cases}}\)
\(\hept{\begin{cases}x=y+3\\3y+9-4y=2\end{cases}}\)
\(\hept{\begin{cases}x=y+3\\y=7\end{cases}}\)
\(\hept{\begin{cases}x=10\left(tm\right)\\y=7\left(tm\right)\end{cases}}\)
Vậy (x;y)=(10;7)
\(\hept{\begin{cases}\frac{x}{2}-\frac{y}{3}=1\\5x-8y=3\end{cases}}\)
\(\hept{\begin{cases}x-\frac{2y}{3}=2\\5x-8y=3\end{cases}}\)
\(\hept{\begin{cases}x=\frac{2y}{3}+2\\10+\frac{10y}{3}-8y=3\end{cases}}\)(thay x =2y/3 + 2 vào bthuc bên cạnh )
\(\hept{\begin{cases}x=2+\frac{2}{3}y\\-\frac{14}{3}y=-7\end{cases}}\)
\(\hept{\begin{cases}x=2+\frac{2}{3}\cdot\frac{3}{2}=3\\y=\frac{3}{2}\end{cases}}\)
Vậy (x;y)=(3:3/2)
Bài toán giải hệ phương trình bằng phương pháp thế có 2 cách trình bày.
Cách 1:
Từ (1) ta rút ra được x = -y√5 (*)
Thế (*) vào phương trình (2) ta được :
Thay y = 5 - 1 2 vào (*) ta được: x = − 5 − 1 2 ⋅ 5 = 5 − 5 2
Vậy hệ phương trình có nghiệm 5 − 5 2 ; 5 − 1 2
Từ (2) ta rút ra được y = -4x + 4 - 2 √3 (*)
Thế (*) vào phương trình (1) ta được:
Thay x = 1 vào (*) ta được y = -4.1 + 4 - 2√3 = -2√3
Vậy hệ phương trình có nghiệm duy nhất (1; -2√3)
Cách 2 :
Vậy hệ phương trình có nghiệm duy nhất 5 − 5 2 ; 5 − 1 2
Vậy hệ phương trình có nghiệm duy nhất (1; -2√3)
Kiến thức áp dụng
Giải hệ phương trình ta làm như sau:
Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).
Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .
Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.