K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

(2x-1)(x-3)-3x+1≤(x-1)(x+3)+x2-5

<=> 2x2-6x-x+3-3x+1≤x2+3x-x-3+x2-5

<=> -12x≤-6

<=>x≥\(\frac{1}{2}\)

Vậy nghiệm của bpt là S=[\(\frac{1}{2}\);+∞)

NV
7 tháng 4 2021

ĐKXĐ: \(x^2+x-1\ge0\)

\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+b^2>3ab\)

\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)

\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)

14 tháng 3 2020

\(\frac{2x+3}{x-1}< x+1\left(x\ne1\right)\)

\(\Leftrightarrow\frac{2x+3}{x-1}-x-1< 0\)

\(\Leftrightarrow\frac{2x+3-x^2+1}{x-1}< 0\)

\(\Leftrightarrow\frac{-x^2+2x+4}{x-1}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+2x-4< 0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}-x^2+2x-4>0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1-\sqrt{5}\\x>1+\sqrt{5}\end{matrix}\right.\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}1-\sqrt{5}< x< 1+\sqrt{5}\\x< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1+\sqrt{5}\\1-\sqrt{5}< x< 1\end{matrix}\right.\)

Vậy...........