K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

x  < 35/32 nha 

25 tháng 4 2018

     \(4\left(x-3\right)^2-\left(2x-1\right)^2>12x\)

\(\Leftrightarrow\)\(4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)>12x\)

\(\Leftrightarrow\)\(4x^2-24x+36-4x^2+4x-1>12x\)

\(\Leftrightarrow\)\(-20x+35-12x>0\)

\(\Leftrightarrow\)\(-32x+35>0\)

\(\Leftrightarrow\)\(-32x>-35\)

\(\Leftrightarrow\)\(x< \frac{35}{32}\)

Đây là giải bất phương trình nhé bạn

a) Ta có: \(3\left(1-2x\right)< 4\left(5-\frac{3x}{2}\right)\)

\(\Leftrightarrow3-6x< 20-6x\)

\(\Leftrightarrow3-6x-20+6x< 0\)

hay -17<0(vô lý)

Vậy: \(S=\varnothing\)

b) Ta có: \(4-\left(x-3\right)^2-\left(2x-1\right)^2>12x\)

\(\Leftrightarrow4-\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x>0\)

\(\Leftrightarrow4-x^2+6x-9-4x^2+4x-1-12x>0\)

\(\Leftrightarrow-5x^2-2x-6>0\)

\(\Leftrightarrow-5\left(x^2+\frac{2}{5}x+\frac{6}{5}\right)>0\)

\(\Leftrightarrow x^2+\frac{2}{5}x+\frac{6}{5}< 0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{2}{10}+\frac{4}{100}+\frac{29}{25}< 0\)

\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2+\frac{29}{25}< 0\)(vô lý)

Vậy: \(S=\varnothing\)

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

27 tháng 8 2020

a) Ta có: \(\left(2x+1\right)^2+\left(1-x\right)3x\le\left(x+2\right)^2\)

\(\Leftrightarrow x^2+4x+4\ge4x^2+4x+1+3x-3x^2\)

\(\Leftrightarrow x^2+4x+4\ge x^2+7x+1\)

\(\Leftrightarrow3\ge3x\)

\(\Rightarrow x\le1\)

b) Ta có: \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow6x\le-30\)

\(\Leftrightarrow x\le-5\)

27 tháng 8 2020

a) ( 2x + 1 )2 + ( 1 - x )3x ≤ ( x + 2 )2

<=> 4x2 + 4x + 1 + 3x - 3x2 ≤ x2 + 4x + 4

<=> 4x2 + 4x + 3x - 3x2 - x2 - 4x ≤ 4 - 1

<=> 3x ≤ 3

<=> x ≤ 1

b) ( x - 4 )( x + 4 ) ≥ ( x + 3 )2 + 5

<=> x2 - 16 ≥ x2 + 6x + 9 + 5

<=> x2 - x2 - 6x ≥ 9 + 5 + 16

<=> -6x ≥ 30

<=> x ≤ -5

28 tháng 5 2017

Câu 1:

\(3x\left(12x+4\right)+9x\left(4x+3\right)\)

\(\Leftrightarrow3x\left(12x+4\right)+3x\left[3.\left(4x+3\right)\right]\)

\(\Leftrightarrow3x\left(12x+4\right)+3x\left(12x+6\right)\)

\(\Leftrightarrow3x\left[12x+4+12x+6\right]\)

\(\Leftrightarrow3x.\left(24x+10\right)\)

\(\Leftrightarrow72x^2+30x\)

Câu 2:

\(x\left(5+2x\right)+2x^2\left(x-1\right)\)

\(\Leftrightarrow5x+2x^2+2x^3-2x^2\)

\(\Leftrightarrow2x^3+5x\)

28 tháng 5 2017

Đề 1

  • Use different phrasing or notations
  • Enter whole words instead of abbreviations
  • Avoid mixing mathemaal and other notations
  • Check your spelling
  • Give your input in English
Other tips for using Wolfram|Alpha:
  • Wolfram|Alpha answers specific questions rather than explaining general topics
    Enter "2 cups of sugar", not "nutrition information"
  • You can only get answers about objective facts
    Try "highest mountain", not "most beautiful painting"
  • Only what is known is known to Wolfram|Alpha
    Ask "how many men in Mauritania", not "how many monsters in Loch Ness"
  • Only public information is available
    Request "GDP of France", not "home phone of Michael Jordan"

Input:

 
1>3 x (12 x + 4) + 9 x (4 x + 3)

Open code

 
 
 

Inequality plot:

 
 
| | 1  | 3 x (24 x + 13)

Open code

 
EnlargeDataCustomizeA PlaintextInteractive
 

Alternate forms:

1>3 x (24 x + 13)

Open code

 
 
3 x (24 x + 13)<1

Open code

 
 
768/67 (x + 13/48)^2<1
 
 
 

Expanded form:

1>72 x^2 + 39 x

Open code

 
 
 

Solution:

  • Approximate form
1/48 (-13 - sqrt(201))<x<1/48 (sqrt(201) - 13)

Open code

 
 
 

Integer solution:

x = 0

Open code

 
 
 
12 tháng 8 2019

\(a,\frac{x+5}{x^2-2x+1}>0\)

\(\Leftrightarrow\frac{x+5}{\left(x-1\right)^2}>0\)

\(\Leftrightarrow x>-5\)

\(b,x^2+x+1>0\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( luôn đúng)

12 tháng 8 2019

có nhé bn

7 tháng 7 2018

a) \(x^2-4x+3>0\)

\(\Leftrightarrow x^2-x-3x+3>0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)>0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)>0\)

Lập bảng xét dấu :

x x-3 x-1 (x-3)(x-1) 1 3 - 0 - + 0 - + + + - +

Dựa vào bảng xét dấu ta có : \(x< 1\) hoặc \(x>3\)

b) \(x^2-2x+3x-6< 0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)< 0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\)

Lập bảng xét dấu :

x x+3 x-2 (x+3)(x-2) -3 2 0 0 - - + - + + + - +

Dựa vào bảng xét dấu ta có : \(-3< x< 2\)

7 tháng 7 2018

phần b bn sai đề zui

22 tháng 8 2020

a) \(5\left(x-2\right)>3\left(x-4\right)\)

\(\Leftrightarrow5x-10>3x-12\)

\(\Leftrightarrow2x>-2\)

\(\Rightarrow x>-1\)

b) \(7\left(x+3\right)< 9\left(x-1\right)\)

\(\Leftrightarrow7x+21< 9x-9\)

\(\Leftrightarrow2x>30\)

\(\Rightarrow x>15\)

22 tháng 8 2020

c) Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

=> \(2x-5>0\Rightarrow2x>5\Rightarrow x>\frac{5}{2}\)

d) \(x^2-2x+5=\left(x-1\right)^2+4>0\left(\forall x\right)\)

\(\Rightarrow3x-8< 0\Rightarrow3x< 8\Rightarrow x< \frac{8}{3}\)