\(\sqrt{x+2}+x^2-x-2\le\sqrt{3x-2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2020

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow\sqrt{x+2}-2+x-\sqrt{3x-2}+x^2-2x\le0\)

\(\Leftrightarrow\frac{x-2}{\sqrt{x+2}+2}+\frac{x^2-3x+2}{x+\sqrt{3x-2}}+x\left(x-2\right)\le0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{\sqrt{x+2}+2}+\frac{x-1}{x+\sqrt{3x-2}}+x\right)\le0\)

\(\Leftrightarrow x-2\le0\Rightarrow x\le2\)

Vậy nghiệm của BPT là: \(\frac{2}{3}\le x\le2\)

26 tháng 4 2019

1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)

\(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0

\(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0

\(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0

\(\sqrt{6x^2-18x+12}-6\) > 0

\(\sqrt{6x^2-18x+12}>6\)

\(6x^2-18x+12>36\)

\(6x^2-18x-24>0\)

\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)

đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)

b) ĐKXĐ: \(\forall x\) ϵ R

\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)

\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)

NV
4 tháng 5 2020

\(\frac{1}{x+2}-\frac{x+2}{3x-5}\ge0\)

\(\Leftrightarrow\frac{-x^2-x-9}{\left(x+2\right)\left(3x-5\right)}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-5\right)< 0\) (do \(-x^2-x-9< 0;\forall x\))

\(\Rightarrow-2< x< \frac{5}{3}\)

2/ ĐKXĐ: \(1\le x\le3\)

\(\Leftrightarrow-x^2+4x-3\le\left(x-1\right)^2\)

\(\Leftrightarrow2x^2-6x+4\ge0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)

Kết hợp ĐKXĐ: \(\left[{}\begin{matrix}x=1\\2\le x\le3\end{matrix}\right.\)

NV
5 tháng 6 2020

a/ Đặt \(\sqrt{x^2-3x+5}=t>0\)

\(\Leftrightarrow t^2-5-t>1\Leftrightarrow t^2-t-6>0\)

\(\Rightarrow\left[{}\begin{matrix}t>3\\t< -2\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{x^2-3x+5}>3\)

\(\Leftrightarrow x^2-3x+5>9\Leftrightarrow x^2-3x-4>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -1\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ge1\)

Đặt \(\sqrt[4]{x-\sqrt{x^2-1}}=t>0\Rightarrow\sqrt[4]{x+\sqrt{x^2-1}}=\frac{1}{t}\)

\(\Leftrightarrow t+\frac{4}{t^2}-3< 0\)

\(\Leftrightarrow t^3-3t^2+4< 0\)

\(\Leftrightarrow\left(t+1\right)\left(t-2\right)^2< 0\)

Do \(t>0\Rightarrow t+1>0\Rightarrow VT\ge0\Rightarrow\) BPT vô nghiệm

NV
20 tháng 5 2020

ĐKXĐ: \(-2\le x\le3\)

\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)

\(\Leftrightarrow x^2-x-2\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)

15 tháng 2 2019

Đặt \(t=x+\sqrt{1-x^2}\left(t\ge0\right)\)

=> \(t^2=x^2+1-x^2+2x\sqrt{1-x^2}\)

=> \(x\sqrt{1-x^2}=\frac{t^2-1}{2}\)

Thế vào bpt ta có : \(t< \frac{t^2-1}{2}\)

<=> \(t^2-2t-1>0\)

<=> \(\orbr{\begin{cases}t>1+\sqrt{2}\\t< 1-\sqrt{2}\end{cases}}\)

Bạn thay vào giải tiếp nha

24 tháng 5 2020

a. \(\sqrt{\left(x-1\right)\left(4-1\right)}>x-2\)\(\sqrt{-x^2+5x-4}>x-2\)

ĐK: 1 ≤ x ≤ 4 (1)

BPT ⇔ \(\left[{}\begin{matrix}x-2< 0\\\left\{{}\begin{matrix}x-2>0\\-x^2+5x-4>x^2-4x+4\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}x< 2\\\left\{{}\begin{matrix}x>2\\\frac{9-\sqrt{17}}{4}< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) (2)

Từ (1), (2) suy ra: \(\left[{}\begin{matrix}1\le x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) ⇔ x ∈ (1; \(\frac{9+\sqrt{17}}{4}\))\(|\left\{2\right\}\)

b. ĐK: -3 ≤ x ≤ 4 (1)

BPT ⇔ \(\left\{{}\begin{matrix}x-11\ge0\\12+x-x^2\le\left(x-11\right)^2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge11\\\forall x\end{matrix}\right.\) ⇔ x ≥ 11 (2)

Từ (1), (2) suy ra: BPT vô nghiệm

c. ĐK: x ≤ -2, x ≥ 2 (1)

BPT ⇔ (x -3)\(\sqrt{x^2-4}\) ≤ (x - 3)(x + 3)

- Xét x = 3 là nghiệm của BPT (2)

- Xét x≠ 3, BPT ⇔ \(\sqrt{x^2-4}\) ≤ x + 3

\(\left\{{}\begin{matrix}x+3\ge0\\x^2-4\le\left(x+3\right)^2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge-3\\x\ge\frac{-5}{2}\end{matrix}\right.\) ⇔ x ≥ \(\frac{-5}{2}\) (3)

Từ (1), (2), (3) suy ra BPT có nghiệm: x ∈ \([\frac{-5}{2};4]\)

1 tháng 4 2020

1. Đợi chút t tìm cách ngắn gọn.

2. ĐK: \(\left\{{}\begin{matrix}2x^2+8x+6\ge0\\x^2-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge1\\x=-1\end{matrix}\right.\) (*)

BPT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+8x+5+2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\le\left(2x+2\right)^2\left(1\right)\end{matrix}\right.\)

Giải (1) \(\Leftrightarrow x^2-1-2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\ge0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\right)\ge0\)

TH1: \(\sqrt{x^2-1}=0\Leftrightarrow x=\pm1\) (tm)

TH2: \(x^2-1\ne0\)

\(\Leftrightarrow\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\ge0\)

\(\Leftrightarrow\sqrt{x^2-1}\ge2\sqrt{2x^2+8x+6}\)

\(\Leftrightarrow x^2-1\ge8x^2+32x+24\)

\(\Leftrightarrow7x^2+32x+25\le0\)

\(\Leftrightarrow-\frac{25}{7}\le x\le-1\) kết hợp đk (*) và đk để giải bpt

=>\(x=-1\)

Vậy \(x=\pm1\)

1 tháng 4 2020

3. ĐK: \(x\ge\frac{4}{5}\)

\(BPT\Leftrightarrow\sqrt{5x-4}-\sqrt{3x-2}+\sqrt{4x-3}-\sqrt{2x-1}>0\)

\(\Leftrightarrow\frac{2x-2}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{2x-2}{\sqrt{4x-3}+\sqrt{2x-1}}>0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{1}{\sqrt{4x-3}+\sqrt{2x-1}}\right)>0\)

\(\Leftrightarrow x-1>0\) \(\Leftrightarrow x>1\)

Vậy \(x>1\)