\(\dfrac{2x-13}{2}\ge0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Mon lớp 7 , sẽ cố gắng giải cho bạn , ý kiến của Mon đây ạ :

Ta có \(\dfrac{2x-13}{2}\ge0\)

\(\Rightarrow2x\ge13\)

\(\Rightarrow x\ge13\div2\)

\(\Rightarrow x\ge\dfrac{13}{2}\)

17 tháng 4 2018

Đúng rùi đấy nhưng mon thiếu bước vì 2 >= 0 nha

nên mới suy ra đc 2x >= 13 chứ

Bố nè mon

21 tháng 4 2018

Bạn kia sai rồi tớ sửa lại cho :

a) ( 2x - 4)( x + 3) > 0

Lập bảng xét dấu : x 2x-4 x+3 Tích số -3 2 0 0 0 0 - - + - + + + - +

Vậy , nghiệm của BPT : x < -3 hoặc : x > 2

b) Lập bảng xét dấu :

x x-1 x+3 Thương -3 1 0 0 - - + - + + 0 + - + Vậy , x < -3 hoặc x >1

10 tháng 4 2017

a) 2x2+6x-4x-12 > 0

2x2+2x-12 > 0

2( x2+x-6)>0

2(x2+2.\(\dfrac{1}{2}\).x+\(\dfrac{1}{4}\)-6-\(\dfrac{1}{4}\)) > 0

2(\(x+\dfrac{1}{2}\))2-\(\dfrac{25}{2}\)>0

rồi giải tiếp

a: =>-12x>12

hay x<-1

b: =>7(3x-1)-252>=21x+3(6x+1)

=>21x-7-252>=21x+18x+3

=>18x+3<=-259

=>18x<=-262

hay x<=-131/9

c: =>3(3x+5)-24x<=48+4(x+8)

=>9x+15-24x<=48+4x+32=4x+80

=>-15x+24<=4x+80

=>-19x<=56

hay x>=-56/19

12 tháng 4 2018

1. \(\dfrac{x+1}{x-1}+\dfrac{3x}{x+1}=4\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\cdotĐKXĐ:x-1\ne0\Leftrightarrow x\ne1 \)
\(x+1\ne0\Leftrightarrow x\ne-1\)

pt: x2 + x + x + 1 +3x2 - 3x = 4x2 + 4x - 4x -4

\(\Leftrightarrow\) x2 + 3x2 - 4x2 + x + x - 3x + 4x - 4x = -4 -1

\(\Leftrightarrow\) - 1x = - 5

\(\Leftrightarrow\) x = \(\dfrac{-5}{-1}\)

\(\Leftrightarrow\) x = 5 ( nhận )

Vậy pt có tập nghiệm S= \(\left\{5\right\}\)

2. \(\left|x+2\right|< 2x+10\)

Vì x + 2 < 2x + 10(1) nên x + 2 > 0

-(x + 2) < 2x + 10(2) nên - (x + 2) <0

pt(1): x + 2 < 2x + 10

\(\Leftrightarrow\) x - 2x < 10 -2

\(\Leftrightarrow\) -x < 8

\(\Leftrightarrow\) x > -8 ( nhận )

pt(2): -(x + 2) < 2x + 10

\(\Leftrightarrow\) - x - 2 < 2x + 10

\(\Leftrightarrow\) - x - 2x < 10 + 2

\(\Leftrightarrow\) -3x < 12

\(\Leftrightarrow\) x < \(\dfrac{12}{-3}\)

\(\Leftrightarrow\) x < -4 ( nhận)

Vậy bpt có tập nghiệm S= \(\left\{x\left|x< -4\right|\right\}\)

\(\left\{x\left|x>-8\right|\right\}\)

12 tháng 4 2018

ko chắc đúng

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)

7 tháng 5 2018

\(\dfrac{2x-1}{3}\)+\(\dfrac{x-1}{2}\)\(\le3\)

<=> \(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x-1\right)}{6}\)\(\le\dfrac{18}{6}\)

<=> 4x -2+3x-3\(\le\)18

<=>7x-5\(\le\)18

<=>7x\(\le\)23

<=>x\(\le\)\(\dfrac{23}{7}\)

Vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{23}{7}\)

\(\dfrac{2x-1}{3}\)+ \(\dfrac{x-1}{2}\)\(\le\) 3

\(\Leftrightarrow\) \(\dfrac{2.\left(2x-1\right)+3.\left(x-1\right)}{6}\)\(\le\) \(\dfrac{18}{6}\)

\(\Leftrightarrow\) 2.(2x-1)+ 3.( x-1)\(\le\) 18

\(\Leftrightarrow\) 4x- 2+ 3x- 3\(\le\) 18

\(\Leftrightarrow\) 4x+ 3x\(\le\) 18+ 2+ 3

\(\Leftrightarrow\) 7x\(\le\) 23

\(\Leftrightarrow\) x\(\le\) \(\dfrac{23}{7}\)

vậy bpt có no là x\(\le\) \(\dfrac{23}{7}\)

7 tháng 5 2018

\(\dfrac{2x-1}{3}\)-\(\dfrac{x+3}{2}\)\(\le\)1

<=>\(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x+3\right)}{6}\)\(\le\)\(\dfrac{6}{6}\)

=>4x -2 +3x+9\(\le\)6

<=>7x+7\(\le\)6

<=>7x\(\le\)6-7

<=>7x\(\le\)-1

<=>x\(\le\)\(\dfrac{-1}{7}\)

vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{-1}{7}\)

7 tháng 5 2018

Mashiro ShiinaAkai HarumaNhã Doanh giúp mk vs

15 tháng 5 2018

\(\dfrac{x+3}{2011}+\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\ge\dfrac{3x}{2014}\)

\(\dfrac{x+3}{2011}+1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\ge\dfrac{3x}{2014}+3\)

\(\dfrac{x+2014}{2011}+\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\ge3\left(\dfrac{x+2014}{2014}\right)\)

\(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)\ge0\)

\(\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)>0\) (bạn có thể chứng minh nếu thích )

Nên \(x+2014\ge0\)

\(\Leftrightarrow x\ge-2014\)

Vậy

có 1 lỗi nhỏ