Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Để phương trình trên là bất phương trình bậc nhất 1 ẩn thì:
\(m^2-1=0\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)=0\)
\(\Leftrightarrow m=1\) hay \(m=-1\)
Ta có m(2x + 1) < 8 ó 2mx + m < 8 ó 2mx + m – 8 < 0
Vậy để bất phương trình m(2x + 1) < 8 là bất phương trình bậc nhất 1 ẩn thì 2mx + m – 8 < 0 là bất phương trình bậc nhất một ẩn.
Theo định nghĩa bất phương trình bậc nhất một ẩn thì a ≠ 0 hay 2m ≠ 0 ó m ≠ 0
Đáp án cần chọn là: C
ý 1: khi m=2 thì:
(m + 1 )x - 3 = x + 5
<=>(2+1)x-3=x+5
<=>3x-3=x+5
<=>2x=8
<=>x=4
Vậy khi m=2 thì x=4.
ý 2:
Để pt trên <=> với 2x-1=3x+2
Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5
Ta có: 2x-1=3x+2
<=>x=-3
=>(m+1).(-3)-3=(-3)+5
<=>-3m-3-3=2
<=>-3m=8
<=>m=-8/3
Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.
Ta có: 2x + 1 > 2(x + 1)
⇔ 2x + 1 > 2x + 2
⇔ 0x > 1
Vậy bất phương trình vô nghiệm.
a, để pt trên là pt bậc nhất khi m khác 2
b, Ta có \(2x+5=x+7-1\Leftrightarrow x=1\)
Thay x = 1 vào pt (1) ta được
\(2\left(m-2\right)+3=m-5\Leftrightarrow2m-1=m-5\Leftrightarrow m=-4\)
\(\Leftrightarrow m^2x+x< m-1\)
\(\Leftrightarrow\left(m^2+1\right)x< m-1\)
Vì \(m^2+1>0\)
\(m^2+1\ne0thi.x=\frac{m-1}{m^2+1}\)
\(m^2+1=0.thi.PT.vô.nghiệm\)
mình nghĩ vậy