Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải bất phương trình sau :
a , \(\frac{x+1}{x+7}\ge0\)
b , \(\frac{2x-1}{3x+2}< 0\)
cảm ơn trước nhé !
a,TH1:\(\hept{\begin{cases}x+1\ge0\\x+7\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-1\\x\ge-7\end{cases}}\)\(\Rightarrow x\ge-1\)
TH2:\(\hept{\begin{cases}x+1\le0\\x+7\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le-1\\x\le-7\end{cases}}\)\(\Rightarrow x\le-7\)
Tập nghiệm của BPT là ...
b,TH1:\(\hept{\begin{cases}2x-1< 0\\3x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 1\\3x>-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-\frac{2}{3}\end{cases}}\)\(\Rightarrow-\frac{2}{3}< x< \frac{1}{2}\)
TH2:\(\hept{\begin{cases}2x-1>0\\3x+2< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>1\\3x< -2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -\frac{2}{3}\end{cases}}\)(loại)
Tập nghiệm của BPT....
\(a,3x-2\ge x+4\) => \(2x\ge6\)=>\(x\ge3\)
\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left[4-\left(x-1\right)^2\right]\ge0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{3}{2}\right)^2+\frac{27}{4}\right]\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(4-x+1\right)\left(4+x-1\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\left[...\right]\left[...\right]\ge0\)(1)
Do [...] và [...] > 0
nên \(\left(1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\ge0\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+3\right)\le0\)
Có: \(x-5< x-3< x-1< x+3\)
Nên xảy ra các trường hợp sau :
TH1:\(\hept{\begin{cases}x-5\le0\\x-3\ge0\end{cases}}\)(Tự giải)
TH2:\(\hept{\begin{cases}x-1\le0\\x+3\ge0\end{cases}}\)(Tự giải)
Cuối cùng gộp khoảng (Nếu được)
Kết luận......
a)3x-2≥x+6
<=>3x-x≥6+2
<=>2x≥8
<=>x≥4
tập nghiệm của phương trình là
\(S=\left\{xIx\ge4\right\}\)
biểu diễn tập nghiệm trên trục số
b)(3x-6)-(-2x-1)≥0
<=>3x-6++1≥0
<=>3x+2x≥6-1
<=>5x≥5
<=>x≥1
tập nghiệm của phương trình là
\(S=\left\{xIx\ge1\right\}\)
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
MTC:2x-1
Quy đồng và khử mẫu 2 vế ta có:
x+1 bé hơn hoặc bằng 0
x bé hơn hoặc bằng -1
Vậy:S{x/x bé hơn hoặc bằng -1}
đk; 2x - 1 khác 0 => x khác 1/2
x+1 >= 0
x>= - 1
nghiem cua pt la ; x>= -1