\(\frac{x+1}{2x-1}\ge0\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

MTC:2x-1

Quy đồng và khử mẫu 2 vế ta có:

x+1 bé hơn hoặc bằng 0

x bé hơn hoặc bằng -1

Vậy:S{x/x bé hơn hoặc bằng -1}

21 tháng 4 2016

đk; 2x - 1 khác 0  => x khác 1/2

x+1 >= 0

x>= - 1

nghiem cua pt la ; x>= -1

19 tháng 4 2018

a,TH1:\(\hept{\begin{cases}x+1\ge0\\x+7\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-1\\x\ge-7\end{cases}}\)\(\Rightarrow x\ge-1\)

TH2:\(\hept{\begin{cases}x+1\le0\\x+7\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le-1\\x\le-7\end{cases}}\)\(\Rightarrow x\le-7\)

Tập nghiệm của BPT là ...

b,TH1:\(\hept{\begin{cases}2x-1< 0\\3x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 1\\3x>-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-\frac{2}{3}\end{cases}}\)\(\Rightarrow-\frac{2}{3}< x< \frac{1}{2}\)

TH2:\(\hept{\begin{cases}2x-1>0\\3x+2< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>1\\3x< -2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -\frac{2}{3}\end{cases}}\)(loại)

Tập nghiệm của BPT....

19 tháng 4 2018

thêm bài a,

Vì \(x\ne-7\) nên \(x< -7\)

Tập nghiệm.....

\(a,3x-2\ge x+4\)   => \(2x\ge6\)=>\(x\ge3\)

NV
23 tháng 9 2019

a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)

c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)

d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)

g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)

h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)

2 tháng 6 2018

a) \(x^3+x^2+2x-16\ge0\)

\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)

Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)

Cho nên \(x-2\ge0\)

\(\Leftrightarrow x\ge2\)

27 tháng 5 2018

a,x^3-2x^2+3x^2-6x+8x-16>=0

(x^2+3x+8)(x-2)>=0

x^2+3x+8>0

=> để lớn hơn hoac bang 0 thì x-2 phải>=0

=>x>=2

b,hình như là vô nghiệm ko chắc chắn lắm

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

16 tháng 1 2019

\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left[4-\left(x-1\right)^2\right]\ge0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{3}{2}\right)^2+\frac{27}{4}\right]\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(4-x+1\right)\left(4+x-1\right)\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\left[...\right]\left[...\right]\ge0\)(1)

Do [...] và [...] > 0

nên \(\left(1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\ge0\)

               \(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+3\right)\le0\)

Có: \(x-5< x-3< x-1< x+3\)

Nên xảy ra các trường hợp sau :

TH1:\(\hept{\begin{cases}x-5\le0\\x-3\ge0\end{cases}}\)(Tự giải)

TH2:\(\hept{\begin{cases}x-1\le0\\x+3\ge0\end{cases}}\)(Tự giải)

Cuối cùng gộp khoảng (Nếu được)

Kết luận......