\(\frac{\sqrt{-x+3x+4}+2}{x}\le1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:
ĐKXĐ: $x\neq 0; x\geq -2$

Với $-2\leq x< 0$ thì:

$\frac{\sqrt{-x+3x+4}+2}{x}< 0< 1$, BPT luôn đúng với mọi $-2\leq x< 0$

Với $x>0$:

BPT $\Leftrightarrow \frac{\sqrt{2x+4}+2}{x}\leq 1$

$\Leftrightarrow \sqrt{2x+4}+2\leq x$

$\Leftrightarrow \sqrt{2x+4}\leq x-2$
\(\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ 2x+4\leq (x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ x(x-6)\geq 0\end{matrix}\right.\Leftrightarrow x\geq 6\)

Vậy BPT có nghiệm $-2\leq x< 0$ hoặc $x\geq 6$

7 tháng 5 2020

\\(\\sqrt{2}x-y=0\\)

\n
3 tháng 5 2020

Câu 1:

Xét \(m=0\Rightarrow f\left(x\right)=0-0-1\le0\left(lđ\right)\)

Xét \(m>0\Rightarrow f\left(x\right)\le0\Leftrightarrow x_1\le0< 3\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le0\left(lđ\right)\\9m-6m-1\le0\end{matrix}\right.\Leftrightarrow m\le\frac{1}{3}\Rightarrow0< m\le\frac{1}{3}\)

Xét \(m< 0\Rightarrow f\left(x\right)\le0\)

Chia làm 3 TH:

TH1: \(\Delta< 0\Leftrightarrow m\left(m+1\right)< 0\Leftrightarrow-1< m< 0\)

TH2: \(\Delta=0\Rightarrow m\left(m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-1\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le3\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Leftrightarrow m< -1\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le0\left(lđ\right)\\\frac{2m}{m}>0\left(lđ\right)\end{matrix}\right.\)

\(x_1< x_2\le3\Leftrightarrow\left\{{}\begin{matrix}f\left(3\right)\le0\\\frac{x_1+x_2}{2}< 3\left(lđ\right)\end{matrix}\right.\)

Vậy \(m\in\left[-1;\frac{1}{3}\right]\)

Có gì sai sót bảo mình ạ :<

NV
8 tháng 5 2019

\(x\ne\pm2\)

\(\Leftrightarrow\left(\frac{x^2-5x+4}{x^2-4}\right)^2\le1\)

\(\Leftrightarrow\left(x^2-5x+4\right)^2\le\left(x^2-4\right)^2\)

\(\Leftrightarrow\left(x^2-5x+4\right)^2-\left(x^2-4\right)^2\le0\)

\(\Leftrightarrow\left(x^2-5x+4-x^2+4\right)\left(x^2-5x+4+x^2-4\right)\le0\)

\(\Leftrightarrow\left(8-5x\right)\left(2x^2-5x\right)\le0\)

\(\Leftrightarrow x\left(8-5x\right)\left(2x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}0\le x\le\frac{8}{5}\\x\ge\frac{5}{2}\end{matrix}\right.\)

8 tháng 5 2019

Bạn có chắc đúng không ạ ?

26 tháng 2 2016

Đặt \(t=x^2\) với điều kiện \(t\in R+\)


\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Rightarrow\) \(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) 

Dễ thấy \(f\left(t\right)\) đồng biến trên R+

Do đó, kết hợp với điều kiện \(t\in R+\) ta có

\(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) \(\Leftrightarrow\)  \(0\le t<3\)

Vì vậy,

\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Leftrightarrow\) \(0\le x^2<3\) \(\Leftrightarrow\) \(\left|x\right|<\sqrt{3}\)

Bất phương trình đã cho có nghiệm là \(-\sqrt{3}\)<x<\(\sqrt{3}\)