\(\frac{1}{\sqrt{x}-1}\)< 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

ĐKXĐ  \(x\ge0;x\ne1\)

  \(\frac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)(Thoả mãn \(x\ne1\))

Vậy \(0\le x< 1\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

13 tháng 7 2017

\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\ .\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
 

15 tháng 7 2017

Thank you ^^^

26 tháng 7 2018

a) \(\sqrt{2x-1}< 3\)

\(\Leftrightarrow2x-1< 9\)

\(\Leftrightarrow2x< 10\)

\(\Leftrightarrow x< 5\)

\(\sqrt{2x-1}\)có nghĩa khi \(2x-1< 0\)

                                              \(\Leftrightarrow2x< 1\)

                                                \(\Leftrightarrow1x\le\frac{1}{2}\)

                   Từ đó x<1/2 

                 \(\Rightarrow\sqrt{2x-1}< 3\)

B tương tự 

6 tháng 8 2018

\(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

   \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

   \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

  \(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Đến đây thay n vào tính S nhé

11 tháng 8 2016

\(A=\frac{1}{x-1}\sqrt{\frac{3x^2-6x+3}{x}}\)\(=\frac{1}{x-1}\sqrt{\frac{3\left(x^2-2x+1\right)}{x}}=\frac{1}{x-1}\sqrt{\frac{3\left(x-1\right)^2}{x}}=\frac{1}{x-1}\cdot\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x}}=\frac{\sqrt{3}}{\sqrt{x}}\)

26 tháng 5 2016

\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))

\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)

\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)

\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)

\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)

Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)

Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))

23 tháng 9 2016

ĐK: \(\hept{\begin{cases}\frac{1}{x^3+1}\ge0\\\frac{x^2-x+1}{x+1}\ge0\end{cases}\Leftrightarrow x+1>0\Leftrightarrow x>-1.}\)

Khi đó ta có: \(pt\Leftrightarrow\sqrt{\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)

\(\Leftrightarrow\sqrt{\frac{x+1}{x^2-x+1}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)

Đặt \(\sqrt{\frac{x+1}{x^2-x+1}}=a\left(a>0\right)\), ta có \(a-\frac{2}{a}+1=0\Leftrightarrow a^2+a-2=0\Rightarrow a=1.\)

Vậy \(\frac{x+1}{x^2-x+1}=1\Rightarrow x+1=x^2-x+1\Leftrightarrow x^2-2x=0\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}\left(tmđk\right)}\)

23 tháng 10 2016

cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn