K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

\(\sqrt{x-3}\)\(\le\)\(\sqrt{6-x}\)

=> \(x-3\)\(\le\)\(6-x\)

<=> x+x \(\le\)6+3

<=> 2x\(\le\)9

=> \(x\le\frac{9}{2}\)

bạn kia giải thiếu điều kiện xác định rồi

\(ĐKXĐ:3\le x\le6\)

Ta có:\(pt\Leftrightarrow x-3\le6-x\Leftrightarrow2x\le9\Leftrightarrow x\le\frac{9}{2}\)

Kết hợp với điều kiện xác định \(\Rightarrow3\le x\le\frac{9}{2}\)

Vậy tập nghiệm của bất phương trình là:\(3\le x\le\frac{9}{2}\)

NV
20 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}\sqrt{x^2-3x+2}\ge0\\\sqrt{x^2+x-6}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ

\(\Rightarrow\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}\ge0\)

Đẳng thức xảy ra khi:

\(\left\{{}\begin{matrix}x^2-3x+2=0\\x^2+x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=2\) (thỏa mãn ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
20 tháng 7 2021

c.

Với \(x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\\sqrt{x^4-2x^2+1}\ge0\end{matrix}\right.\) phương trình vô nghiệm

Với \(x\ge1\) pt tương đương:

\(\sqrt{\left(x^2-1\right)^2}=x-1\)

\(\Leftrightarrow\left|x^2-1\right|=x-1\)

\(\Leftrightarrow x^2-1=x-1\) (do \(x\ge1\Rightarrow x^2-1\ge0\Rightarrow\left|x^2-1\right|=x-1\))

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0< 1\left(loại\right)\\x=1\end{matrix}\right.\)

29 tháng 10 2017

bình phương lên mà tìm , đọc cái phần đầu thầy Quỳnh viết ấy

29 tháng 11 2017

đáp án là bằng nhau

2 tháng 12 2017

ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)

22 tháng 6 2017

1) Bình phương 2 vế của pt, ta được:

\(x^2-4x+9=9\)

<=> \(x^2-4x=0\)

<=>x(x-4) = 0

<=>\(\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

2) Bình phương 2 vế của pt được:

\(x^2-2x-3=4x^2+12x+9\)

\(-3x^2-14x-12=0\)

Áp dụng công thức nghiệm, giải được x

22 tháng 6 2017

Cái đó mình biết làm rồi bạn giúp mình tìm điều kiện nha....

NV
28 tháng 2 2021

Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:

\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)

\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)

Ta có:

\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)

\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)

Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)

2 tháng 1 2022

ĐKXĐ : \(1\le x\le3\)

Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)

<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)

<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)

Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)

Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)

Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)

mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2) 

Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)

Vậy x = 2 là nghiệm bất phương trình