Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)-\log_22^x\)
\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)+\log_{\frac{1}{2}}2^x\)
\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{2x+1}-3^x\right)\)
\(\Leftrightarrow4^x+4\le2^{2x+1}-3.2^x\)
\(\Leftrightarrow4^x-3.2^x-4\ge0\)
\(\Leftrightarrow\begin{cases}2^x\le-1\left(L\right)\\2^x\ge4\end{cases}\)\(\Leftrightarrow x\ge2\)
Vậy bất phương trình có tập nghiệm \(S=\left(2;+\infty\right)\)
Lời giải:
ĐKXĐ: \(x>0\)
Sử dụng công thức sau: \(\log_ax=\frac{\ln x}{\ln a}\) vào bài toán ta có:
\(\log_2x+\log_3x=\log_2x\log_3x\)
\(\Leftrightarrow \frac{\ln x}{\ln 2}+\frac{\ln x}{\ln 3}=\frac{\ln x}{\ln 2}.\frac{\ln x}{\ln 3}\)
\(\Leftrightarrow \ln x\left(\frac{1}{\ln 2}+\frac{1}{\ln 3}-\frac{\ln x}{\ln 2.\ln 3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\ln x=0\left(1\right)\\\dfrac{1}{\ln2}+\dfrac{1}{\ln3}=\dfrac{\ln x}{\ln2.\ln3}\end{matrix}\right.\left(2\right)\)
\((1)\Leftrightarrow x=1\) (thỏa mãn)
\((2)\Leftrightarrow \frac{\ln 2+\ln 3}{\ln 2.\ln 3}=\frac{\ln x}{\ln 2.\ln 3}\)
\(\Leftrightarrow \ln x=\ln 2+\ln 3=\ln 6\Rightarrow x=6\)
Vậy \(x\in\left\{1;6\right\}\)
a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0
\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)
\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)
\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)
Đặt \(\log_x2=a\left(a\in R\right)\)
Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)
\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)
Vậy pt đã cho vô nghiệm
d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :
\(\log_2x+\log_3x+\log_4x=\log_{20}x\)
\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)
\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)
\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)
Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)
Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)
Vậy nghiệm duy nhất của phương trình là \(x=1\)
c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :
\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\log_5x=1\)
\(\Leftrightarrow x=5^1=5\) thỏa mãn
Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
1/Lấy logarit cơ số tự nhiên 2 vế:
\(ln\left(4^{3^x}\right)< ln\left(3^{4^x}\right)\Leftrightarrow3^x.ln4< 4^x.ln3\Leftrightarrow\left(\dfrac{3}{4}\right)^x< \dfrac{ln3}{ln4}=log_43\)
\(\Rightarrow x>log_{\dfrac{3}{4}}\left(log_43\right)\)
2/ Đề là thế này hả bạn? Đột nhiên con \(x^3\) chui vào trong ngoặc đứng 1 mình làm ko hiểu gì hết \(\sqrt{log_x\left(x^3+1\right).log_{x+1}\left(x+2\right)}\)
Đầu tiên là điều kiện để logarit xác định: \(x>0\)
Ta tìm điều kiện để căn thức xác định: \(log_x\left(x^3+1\right).log_{x+1}\left(x+2\right)\ge0\)
Do \(x>0\Rightarrow\left\{{}\begin{matrix}x+1>1\\x+2>2\end{matrix}\right.\) \(\Rightarrow log_{x+1}\left(x+2\right)>0\)
\(\Rightarrow log_x\left(x^3+1\right)\ge0\Rightarrow\dfrac{ln\left(x^3+1\right)}{lnx}\ge0\)
Lại có \(x>0\Rightarrow x^3+1>1\Rightarrow ln\left(x^3+1\right)>0\)
\(\Rightarrow lnx>0\Rightarrow x>1\)
Vậy TXĐ của pt là \(x>1\)
cho mình xin lỗi, bài thứ 2 là tìm tập xác định của phương trình. Mọi người giúp 2 bài này, mình sắp thi r!