K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

Điều kiện xác định x ≠ 1 và x ≠ 1/2.

Giải bài 2 trang 94 SGK Đại Số 10 | Giải toán lớp 10

Các nhị thức –x + 3; x – 1; 2x – 1 có nghiệm lần lượt là 3; 1; 1/2.

Giải bài 2 trang 94 SGK Đại Số 10 | Giải toán lớp 10

Dựa vào bảng xét dấu thấy

Giải bài 2 trang 94 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập nghiệm của bất phương trình là Giải bài 2 trang 94 SGK Đại Số 10 | Giải toán lớp 10

9 tháng 5 2016

Từ bất phương trình ban đầu \(\Leftrightarrow25.5^x-5.5^x>9.3^x-3.3^x\)

                                            \(\Leftrightarrow20.5^x>6.3^x\)

                                            \(\Leftrightarrow\left(\frac{5}{3}\right)^x>\frac{3}{10}\)

                                            \(\Leftrightarrow x>\log_{\frac{5}{3}}\frac{3}{10}\)

5 tháng 4 2017

a)

x^2 +1 >0 mọi x

BPT \(\Leftrightarrow x^2+3x-10< 0\) {\(\Delta=9+40=49\)}

\(\Rightarrow-5< x< 2\)

b)

5+x^2 > 0 với mọi x BPT \(\Leftrightarrow20-2x-x^2-5>0\Leftrightarrow x^2+2x-15< 0\){\(\Delta'=1+15=16\)}

\(\Rightarrow-5< x< 3\)

25 tháng 2 2016

\(\frac{x}{2x-1}>\frac{x-1}{x+2}\Rightarrow\frac{x}{2x-1}-\frac{x-1}{x+2}>0\Rightarrow\frac{-x^2+5x-1}{\left(2x-1\right)\left(x+2\right)}>0\)

x  \(-\infty\)         -2              \(\frac{5-\sqrt{21}}{2}\)                \(\frac{1}{2}\)                  \(\frac{5+\sqrt{21}}{2}\)              \(+\infty\)                      
-x2 + 5x - 1           -              -            0           +                 +            0              - 
2x - 1          -               -                          -        0        +                           +
x + 2           -        0      +                      +                   +                            +

=> VT :                -        //      +         0           -          //        +            0              -

Vậy \(S=\left(-2;\frac{5-\sqrt{21}}{2}\right)\cup\left(\frac{1}{2};\frac{5+\sqrt{21}}{2}\right)\)

25 tháng 2 2016

\(\frac{x}{2x-1}>\frac{x-1}{x+2}\)   (1)

\(\Leftrightarrow\)  \(\frac{\left(2x-1\right)\left(x-1\right)-x\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}<0\)

\(\Leftrightarrow\)  \(\frac{x^2-5x+1}{2x^2+3x-2}<0\)  (a)

Xét các trường hợp

- Nếu \(2x^2+3x-2<0\)  hay là \(x\in\left(-2;\frac{1}{2}\right)\)  := (*) thì (a) \(\Leftrightarrow\) \(x^2-5x+1>0\)

\(\Leftrightarrow\)\(x<\frac{5-\sqrt{21}}{2}\)  hoặc \(\frac{5-\sqrt{21}}{2}\)< x

Kết hợp với điều kiện \(x\in\) (*) ta được -2<x<\(\frac{5-\sqrt{21}}{2}\)

- Nếu \(2x^2+3x-2>0\) hay \(x\in\left(-\infty;-2\right)\cup\left(\frac{1}{2};+\infty\right)\) : = (* *) 

thì (1) \(\Leftrightarrow\) \(x^2-5x+1<0\) \(\Leftrightarrow\) \(\frac{5-\sqrt{21}}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

Kết hợp với điều kiện x\(\in\)(* * ) ta được \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

Tóm lại : 

(1) có nghiệm -2<x<\(\frac{5-\sqrt{21}}{2}\) hoặc  \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

 

27 tháng 2 2016

\(\frac{x+2}{x\left(x+1\right)}>1\Rightarrow\frac{x-2-x\left(x+1\right)}{x\left(x+1\right)}>0\Rightarrow\frac{x-3-x^2-x}{x\left(x+1\right)}>0\Rightarrow\frac{-x^2-3}{x\left(x+1\right)}>0\)

Lập bảng xét dấu:

x             \(-\infty\)                          -1                     0                    \(+\infty\)
-x2 - 3                     +                            +                      +
x                     -                            -         0            +          
x + 1                     -                 0         +                      +
Vế trái                     +                //         -          //            +

Vậy S = (-\(\infty\) ; -1) \(\cup\) (0 ; +\(\infty\))

9 tháng 5 2016

\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\)\(\Leftrightarrow\left(x^2-2x\right)^2-2\left(x^2-2x+1\right)-1\ge0\)

Đặt \(t=x^2-2x\), ta được \(t^2-2t-3\ge0\)

Bất phương trình này có nghiệm \(\left[\begin{array}{nghiempt}t\le-1\\t\ge3\end{array}\right.\)

Do đó \(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x^2-2x\le-1\\x^2-2x-3\ge0\end{array}\right.\)

                                                          \(\Leftrightarrow x=1\) hoặc \(x\le-1\) hoặc \(x\ge3\)

Vậy bất phương trình đã cho có tập nghiệm là 

S =(\(-\infty;-1\)\(\cup\left\{1\right\}\cup\) [3;\(+\infty\))

10 tháng 4 2020

\(\frac{2x-5}{\left|x-5\right|}+1\ge0\)

\(\Leftrightarrow\frac{2x-5}{\left|x-5\right|}\ge-1\)

\(\Leftrightarrow2x-5\le-\left|x-5\right|\)

\(\Leftrightarrow\left(2x-5\right)^2\le\left(-\left|x-5\right|\right)^2\)

\(\Leftrightarrow4x^2-20x+25\le x^2-10x+25\)

\(\Leftrightarrow3x^2-10x\le0\)

\(\Leftrightarrow x\left(3x-10\right)\le0\)

Làm nốt

25 tháng 2 2016

chị giải rõ ra được k em mới học lớp 5

25 tháng 2 2016

\(x^2-\left|3x+2\right|+x-1>0\) (1)

\(\Leftrightarrow\begin{cases}\begin{cases}3x+2\ge0\\x^2-\left(3x+2\right)+x-1=x^2-2x-3>0\end{cases}\\\begin{cases}3x+2<0\\x^2+\left(3x+2\right)+x-1=x^2+4x+1>0\end{cases}\end{cases}\)

\(\Leftrightarrow\begin{cases}-\frac{2}{3}\le x\\x\in\left(-\infty,-1\right)\cup\left(3;+\infty\right)\end{cases}\) hoặc \(\begin{cases}x<-\frac{2}{3}\\x\in\left(-\infty;-2-\sqrt{3}\right)\cup\left(-2+\sqrt{3};+\infty\right)\end{cases}\)

\(\Leftrightarrow x<-2-\sqrt{3}\) hoặc \(x>3\)

Vậy bất phương trình có tập nghiệm T(1) = \(\left(-\infty;-2-\sqrt{3}\right)\cup\left(3;+\infty\right)\)