Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2017-x^3\)
\(=x^4+4x^2+2017\)
b) Bậc của P(x) là 4
c) Các hệ số của P(x) là 1;4;2017
Hệ số cao nhất là 4
Hệ số tự do là 2017
d) \(P\left(0\right)=0^4+4\cdot0^2+2017=2017\)
\(P\left(1\right)=1^4+4\cdot1^2+2017=1+4+2017=2022\)
\(P\left(-1\right)=\left(-1\right)^4+4\cdot\left(-1\right)^2+2017=1+4+2017=2022\)
e) \(P\left(-a\right)=\left(-a\right)^4+4\cdot\left(-a\right)^2+2017=a^4+4a^2+2017\)
\(P\left(a\right)=a^4+4a^2+2017\)
Do đó: P(-a)=P(a)
Lời giải:
\(E=\frac{3(|x|+2)+8}{|x|+2}=3+\frac{8}{|x|+2}\)
Vì $|x|\geq 0$ với mọi $x$ nên $|x|+2\geq 2$
$\Rightarrow \frac{8}{|x|+2}\leq 4$
$\Rightarrow E=3+\frac{8}{|x|+2}\leq 3+4=7$
Vậy $E_{\max}=7$. Giá trị này đạt tại $x=0$
GIÚP MIK VS NHA:(((((
CẢM ƠN RẤT NHIỀU
MN XONG CÂU NÀO THÌ CỨ GỬI LUÔN CHO MIK CÂU ĐÓ NHA;-;
MIK CÒN CHÉP KỊP
:(((((((((((((( NHANHH NHANH GIÚP MIK Ạ
Câu 1:
\(a,\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x-y}{4-7}=\dfrac{-15}{-3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=35\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{-32}{8}=-4\\ \Rightarrow\left\{{}\begin{matrix}x=-12\\y=-20\end{matrix}\right.\\ c,\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{-90}{10}=-9\\ \Rightarrow\left\{{}\begin{matrix}x=-18\\y=-27\\z=-45\end{matrix}\right.\\ d,\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{7}=\dfrac{2x-4y+3z}{8-8+21}=\dfrac{42}{21}=2\\ \Rightarrow\left\{{}\begin{matrix}x=8\\y=4\\z=14\end{matrix}\right.\)
\(e,\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{z-x}{7-5}=\dfrac{30}{2}=15\\ \Rightarrow\left\{{}\begin{matrix}x=75\\y=90\\z=105\end{matrix}\right.\\ f,\Rightarrow\dfrac{x}{3}=\dfrac{y}{5};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{12}=\dfrac{y}{20}=\dfrac{z}{9}=\dfrac{x-y-z}{12-20-9}=\dfrac{-68}{-17}=4\\ \Rightarrow\left\{{}\begin{matrix}x=48\\y=80\\z=36\end{matrix}\right.\\ g,\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{6+4+3}=\dfrac{65}{13}=5\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=15\end{matrix}\right.\\ h,\Rightarrow\dfrac{x}{4}=\dfrac{y}{6};\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{x}{20}=\dfrac{y}{30}=\dfrac{z}{48}=\dfrac{5x-3y-3z}{100-90-144}=\dfrac{-536}{-134}=4\\ \Rightarrow\left\{{}\begin{matrix}x=80\\y=120\\z=192\end{matrix}\right.\)
\(\left(x-3\right)^x+2-\left(x-3\right)^x+8=0\)
\(\Leftrightarrow\left(x-3\right)^x\cdot\left(2+8\right)=0\)
\(\Leftrightarrow10\cdot\left(x-3\right)^x=0\)
\(\Leftrightarrow\left(x-3\right)^x=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
góc tEa = góc D2 =390 ( so le trong do a//b)
góc D1 = 180 0 - góc D2 ( do góc D1 + góc D2 =1800)
= 1800-390=1410
góc D3 = góc D1 = 1410 ( đối đỉnh )
góc D4 = góc D2 = 390(đối đỉnh)
Kẻ Ex//AB(Ex và AB nằm trên cùng mặt phẳng bờ chứa tia BE)
Ta có: Ex//AB
AB//FG
Do đó: Ex//FG
Ex//AB
=>\(\widehat{BEx}=\widehat{CBA}\)(hai góc đồng vị)
=>\(\widehat{xEB}=49^0\)
Ta có: Ex//FG
=>\(\widehat{xEF}+\widehat{EFG}=180^0\)
=>\(\widehat{xEF}=180^0-120^0=60^0\)
\(\widehat{BEF}=\widehat{xEB}+\widehat{xEF}=49^0+60^0=109^0\)