K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading... .

2
8 tháng 7 2024

a) \(\lim\limits_{ }\left(\sqrt{n^2-n+1}-n\right)\)

\(=\lim\limits_{ }\left[\dfrac{\left(\sqrt{n^2-n+1}-n\right)\left(\sqrt{n^2-n+1}+n\right)}{\sqrt{n^2-n+1}+n}\right]\)

\(=\lim\limits_{ }\left(\dfrac{1-n}{\sqrt{n^2-n+1}+n}\right)\)

\(=\lim\limits_{ }\left(\dfrac{\dfrac{1}{n}-1}{\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)\)

\(=-\dfrac{1}{2}\)

b) \(\lim\limits_{ }\left(\dfrac{-3}{4n^2-2n+1}\right)=0\)

c) \(\lim\limits_{ }\dfrac{n^2+n+5}{2n+1}=+\infty\)

d) \(\lim\limits_{ }\left(\sqrt{n^2-1}-\sqrt{3n^2+2}\right)\)

\(=\lim\limits_{ }\left(\dfrac{-2n^2-3}{\sqrt{n^2-1}+\sqrt{3n^2+2}}\right)\)

\(\lim\limits_{ }\left(\dfrac{-2n-\dfrac{3}{n}}{\sqrt{1-\dfrac{1}{n^2}}+\sqrt{3+\dfrac{2}{n^2}}}\right)\)

\(=-\infty\)

a: \(lim\left(\sqrt{n^2-n+1}-n\right)\)

\(=\lim\limits\dfrac{n^2-n+1-n^2}{\sqrt{n^2-n+1}+n}=\lim\limits\dfrac{-n+1}{\sqrt{n^2-n+1}+n}\)

\(=\lim\limits\dfrac{-1+\dfrac{1}{n}}{\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{-1+0}{\sqrt{1-0+0}+1}=\dfrac{-1}{2}\)

b: \(\lim\limits\dfrac{-3}{4n^2-2n+1}\)

\(=\lim\limits\dfrac{-\dfrac{3}{n^2}}{4-\dfrac{2}{n}+\dfrac{1}{n^2}}=\dfrac{0}{4-0+0}=0\)

c: \(\lim\limits\dfrac{n^2+n+5}{2n+1}=\lim\limits\dfrac{n^2\left(1+\dfrac{1}{n}+\dfrac{5}{n^2}\right)}{n\left(2+\dfrac{1}{n}\right)}\)

\(=\lim\limits\dfrac{n\left(1+\dfrac{1}{n}+\dfrac{5}{n^2}\right)}{2+\dfrac{1}{n}}=+\infty\)

d: \(\lim\limits\left(\sqrt{n^2-1}-\sqrt{3n^2+2}\right)\)

\(=\lim\limits\left(\dfrac{n^2-1-3n^2-2}{\sqrt{n^2-1}+\sqrt{3n^2+2}}\right)=\lim\limits\left(\dfrac{-2n^2-3}{\sqrt{n^2-1}+\sqrt{3n^2+2}}\right)\)

\(=\lim\limits\left(\dfrac{n^2\left(-2-\dfrac{3}{n^2}\right)}{n\cdot\left(\sqrt{1-\dfrac{1}{n^2}}+\sqrt{3+\dfrac{2}{n^2}}\right)}\right)\)

\(=\lim\limits\left(\dfrac{n\left(-2-\dfrac{3}{n^2}\right)}{\sqrt{1-\dfrac{1}{n^2}}+\sqrt{3+\dfrac{2}{n^2}}}\right)=+\infty\)

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

9 tháng 1 2024

11 tháng 4 2024

loading... loading... 

11 tháng 4 2024

loading... 

11 tháng 4 2024

loading...Too Hân

18 tháng 9 2019

2 : cho ab=cd(a,b,c,d0)ab=cd(a,b,c,d≠0) và đôi 1 khác nhau, khác đôi nhau

Chứng minh :

a) C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

\(\frac{a-b}{a+b}=\frac{kb-b}{kb+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)

\(\frac{c-d}{c+d}=\frac{kd-d}{kd+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}\frac{k-1}{k+1}\)

Bài 1: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)

Do đó: x=60; y=45; z=40

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).

b)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).