K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

Gọi chiều rộng của vườn hoa hình chữ nhật là x (x>0). Như vậy thì chiều dài của vườn hoa hình chữ nhật này là x+6.

Ta lập được phương trình \(x\left(x+6\right)=91\Leftrightarrow\left(x+13\right)\left(x-7\right)=0\Rightarrow x=7\left(m\right)\)

Chu vi của vườn hoa là \(2\left(x+x+6\right)=40\left(m\right)\)

8 tháng 11 2018

Gọi x(m) là chiều rộng của vườn hoa, x>0.

Chiều dài của vườn hoa là x+6 (m).                                                  

Theo đề bài ta có phương trình:  x x + 6 = 91 ⇔ x 2 + 6 x − 91 = 0 ⇔ x − 7 x + 13 = 0 ⇔ x = 7        nhân x = − 13     loai

Vậy chu vi vườn hoa hình chữ nhật là 40m

23 tháng 2 2023

Gọi \(x,y\left(m\right)\) là chiều dài và rộng \(\left(x,y>0\right)\)

Theo đề, ta có :

\(\left\{{}\begin{matrix}y+3=x\\\left(x+4\right)\left(y+2\right)=xy+44\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\xy+2x+4y+8=xy+44\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\2x+4y=36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\left(tm\right)\\y=5\left(tm\right)\end{matrix}\right.\)

Diện tích hình chữ nhật ban đầu : \(8\times5=40\left(m^2\right)\)

23 tháng 2 2021

#TK:

image

 

image

Gọi a(m) và b(m) lần lượt là chiều dài và chiểu rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))

Vì chu vi của thửa ruộng là 40m nên ta có phương trình:

2(a+b)=40

hay a+b=20(1)

Vì diện tích của thửa ruộng là 64m2 nên ta có phương trình:

ab=64(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=20\\ab=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20-b\\\left(20-b\right)b=64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=20-b\\b^2-20b+64=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20-b\\\left(b-16\right)\left(b-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=20-16=4\\a=20-4=16\end{matrix}\right.\\\left[{}\begin{matrix}b=16\\b=4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài và chiều rộng của thửa đất lần lượt là 16m và 4m

14 tháng 5 2021

gọi AB,BC thứ tự là chiều dài và chiều rộng của hcn

diện tích hcn là:AB.BC

vì sau khi tăng chiều dài 5m, chiều rộng 3m thì S tăng thêm 255 m2 nên ta có phương trình

(AB+5).(BC+3)-AB.BC=255

<=>AB.BC+3.AB+5.BC+15-AB.BC=255

<=>3.AB+5.BC=240(1)

mà AB+BC=62=>3.AB+3.BC=186(2)

trừ cả 2 vế của (1) và (2) ta được

3.AB+5.BC-3.AB-3.BC=240-186

<=>2.BC=54<=>BC=27(m)

=>AB=35(m)

Vậy AB=35m,BC=27m

Gọi chiều rộng là x

Chiều dài là x+6

Theo đề, ta có: x(x+6)=216

=>x2+6x=216

=>(x+3)2=225

=>x+3=15 hoặc x+3=-15

=>x=12

Vậy: Chiều rộng là 12m

Chiều dài là 18m

11 tháng 3 2016

gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)

diện tích thửa ruộng là x.y (m2)

nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy

nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy 

từ đó ta tìm được diện tích là 308m2

Gọi chiềudài và chiều rộng lần lượt là a,b

CHu vi 300m nên a+b=300/2=150

Theo đề, ta có:

a+b=150 và (a-10)(b+20)=ab+1000

=>a+b=150 và 20a-10b=1200

=>a=90 và b=60

13 tháng 4 2017

gọi x(m) là chiều dài( dk: x>=0;y>=6)

720/x (m) là chiều rộng

nếu tăng chiều dài 10m thì chiều dài mới là x+10

nếu giảm chiều rộng 6m thì chiều rộng mới là 720/x-6

vì khi thay đôi cd, cr diện tích vẫn giữ nguyên nên ta có pt

(x+10)(720/x-6)=720

<=> 720+7200/x -60-6x=720

<=> 6x2 +60x-7200=0

giải pt ta được x1=30 (TMĐK)

                      x2=-40 (TMĐK)

vậy chiều dài là 30m

       chiều rộng là 720/30=24m

13 tháng 4 2017

khi nào lên lớp 9 mình giải hộ bạn nhé =))