Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
b: ΔABD=ΔACD
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
c: Ta có: \(\widehat{ADB}=90^0\)
=>AD\(\perp\)BC tại D
D là trung điểm của BC
=>\(DB=DC=\dfrac{BC}{2}=\dfrac{24}{2}=12\left(cm\right)\)
ΔADB vuông tại D
=>\(AD^2+DB^2=AB^2\)
=>\(AD^2=20^2-12^2=256\)
=>\(AD=\sqrt{256}=16\left(cm\right)\)
Xét ΔABC có
AD là đường trung tuyến
G là trọng tâm
Do đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot16=\dfrac{32}{3}\left(cm\right)\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
10: Chọn B
Ot là phân giác của \(\widehat{MOP}\)
=>\(\widehat{MOP}=2\cdot\widehat{tOP}\)
\(\widehat{MOP}=\widehat{NOQ}\)
=>\(\widehat{NOQ}=2\cdot\widehat{tOP}\)
mà \(\widehat{tOP}=\widehat{t'OQ}\)(hai góc đối đỉnh)
nên \(\widehat{NOQ}=2\cdot\widehat{t'OQ}\)
=>Ot' là phân giác của góc NOQ
11:
OC là phân giác của góc AOB
=>\(\widehat{AOC}=\widehat{BOC}=\dfrac{50^0}{2}=25^0\)
\(\widehat{DOE}=\widehat{BOC}\left(=25^0\right)\)
=>\(\widehat{DOE}+\widehat{DOB}=180^0\)
=>OB và OE là hai tia đối nhau
=>Hai góc đối đỉnh là \(\widehat{BOC};\widehat{DOE}\)
=>Chọn D
12:
\(\widehat{AOC}+\widehat{AOD}=180^0\)
\(\widehat{AOC}-\widehat{AOD}=50^0\)
Do đó: \(\widehat{AOC}=\dfrac{180^0+50^0}{2}=115^0;\widehat{AOD}=115^0-50^0=65^0\)
=>\(\widehat{BOC}=\widehat{AOD}=65^0\)
=>Chọn B
4. \(\dfrac{-3}{2}+x-\dfrac{5}{4}=\dfrac{-1}{3}-2x\)
<=> \(\dfrac{-18}{12}+\dfrac{12x}{12}-\dfrac{15}{12}=\dfrac{-4}{12}-\dfrac{24x}{12}\)
<=> -18 + 12x - 15 = -4 - 24x
<=> 12x + 24x = 18 + 15 - 4
<=> 36x = 29
<=> x = \(\dfrac{29}{36}\)
6. \(\dfrac{3}{4}x-\dfrac{3}{2}=\dfrac{5}{6}+\dfrac{3}{8}x\)
<=> \(\dfrac{18x}{24}-\dfrac{36}{24}=\dfrac{20}{24}+\dfrac{9x}{24}\)
<=> 18x - 36 = 20 + 9x
<=> 18x - 9x = 20 + 36
<=> 9x = 56
<=> x = \(\dfrac{56}{9}\)
7. \(3-\left(\dfrac{1}{2}+2x\right)=\dfrac{2}{3}-x\)
<=> \(3-\dfrac{1}{2}-2x=\dfrac{2}{3}-x\)
<=> \(\dfrac{18}{6}-\dfrac{3}{6}-\dfrac{12x}{6}=\dfrac{4}{6}-\dfrac{6x}{6}\)
<=> 18 - 3 - 12x = 4 - 6x
<=> 15 - 4 = 12x - 6x
<=> 11 = 6x
<=> x = \(\dfrac{11}{6}\)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
=>ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
Ta có:
\(\dfrac{x}{10}=\dfrac{y}{5}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}\) \(\left(1\right)\)
\(\dfrac{y}{2}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)
Lại có:
\(\dfrac{z}{15}=\dfrac{4z}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{4z}{60}=\dfrac{x+4z}{20+60}=\dfrac{240}{80}=3\)
\(\Rightarrow x=3\cdot20=60\)
\(y=3\cdot10=30\)
\(z=3\cdot15=45\)
Câu 5:
\(\dfrac{13}{6}+x=-2,4\)
\(\Rightarrow\dfrac{13}{6}+x=-\dfrac{12}{5}\)
\(\Rightarrow x=-\dfrac{12}{5}-\dfrac{13}{6}\)
\(\Rightarrow x=-\dfrac{137}{30}\)
Câu 6:
\(3,7-x=\dfrac{7}{10}\)
\(\Rightarrow\dfrac{37}{10}-x=\dfrac{7}{10}\)
\(\Rightarrow x=\dfrac{37}{10}-\dfrac{7}{10}\)
\(\Rightarrow x=3\)
Câu 7:
\(\dfrac{3}{7}+x=\dfrac{2}{14}\)
\(\Rightarrow\dfrac{3}{7}+x=\dfrac{1}{7}\)
\(\Rightarrow x=\dfrac{1}{7}-\dfrac{3}{7}\)
\(\Rightarrow x=-\dfrac{2}{7}\)
Câu 8:
\(\dfrac{3}{7}\cdot y=\dfrac{-2}{5}\)
\(\Rightarrow y=\dfrac{-2}{5}:\dfrac{3}{7}\)
\(\Rightarrow y=\dfrac{-2}{5}\cdot\dfrac{7}{3}\)
\(\Rightarrow y=-\dfrac{14}{15}\)