Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Với giá trị x = 0 thì vế trái của phương trình tương đương, còn vế phải âm nên phương án A và B đều bị loại. Tương tự, với x = -2 thì vế trái dương, vế phải âm nên phương án D bị loại.
Đáp án: C
a: Thay x=-1 và y=2 vào 2x-y+3, ta được:
\(2x-y+3=-2-2+3=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0
b:
-x+2+2(y-2)<2(2-x)(1)
=>-x+2+2y-4<4-2x
=>-x+2y-2-4+2x<0
=>x+2y-6<0
Thay x=-1 và y=2 vào x+2y-6, ta được:
\(x+2y-6=-1+4-6=-3< 0\)
=>(-1;2) là nghiệm của bất phương trình (1)
c: Thay x=-1 và y=2 vào x-y-15, ta được:
\(x-y-15=-1-2-15=-18< 0\)
=>(-1;2) là nghiệm của bất phương trình x-y-15<0
d: 3(x-1)+4(y-2)<5x-3(2)
=>3x-3+4y-8<5x-3
=>3x+4y-11-5x+3<0
=>-2x+4y-8<0
=>x-2y+4>0
Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình (2)
Câu 1: ĐK: $x\neq -1$
Nếu $x\geq 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2-3x}{x+1}\leq 2\Rightarrow \left\{\begin{matrix} x\leq 4\\ x\geq 0\end{matrix}\right.\Rightarrow x\in\left\{0;1;2;3;4\right\}\)
Nếu $x< 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2+3x}{x+1}\leq 2\)
Trường hợp $-1< x< 0$ thì $\Leftrightarrow -2(x+1)\leq 2+3x\leq 2(x+1)$
$\Leftrightarrow x\geq \frac{-4}{5}$ và $x\leq 0$. Kết hợp với ĐK $-1< x< 0$ nên không có giá trị $x$ nguyên thỏa mãn
Trường hợp $x< -1$ thì $\Leftrightarrow -2(x+1)\geq 2+3x\geq 2(x+1)$
$\Leftrightarrow x\leq \frac{-4}{5}$ và $x\geq 0$ (vô lý)
Do đó có 5 giá trị $x$ nguyên thỏa mãn.
Đáp án B
Câu 2:
VTCP của $\Delta_1$: $\overrightarrow{u_1}(m+1, -1)$
VTPT của $\Delta_2$: $\overrightarrow{n_2}(m,-6)$
Để 2 đường thẳng song song với nhau thì: $\overrightarrow{u_1}\perp \overrightarrow{n_2}$
$\Leftrightarrow m(m+1)+(-1)(-6)=0$
$\Leftrightarrow m^2+m+6=0$
$\Leftrightarrow (m+\frac{1}{2})^2=-\frac{23}{4}< 0$ (vô lý- loại)
Vậy không có giá trị m thỏa mãn
Đáp án B.
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
Cách 1: Điều kiện xác định của bất phương trình là x < 3. Khi đó:
1 - x 3 - x > x - 1 3 - x ⇔ 1 - x > x - 1 ⇔ x - 1 < 0 ⇔ x < 1 .
Kết hợp lại, suy ra nghiệm của bất phương trình đã cho là x < 1.
Đáp án là C.
Cách 2: Có thể thay các giá trị trên vào bất phương trình, thực chất chỉ cần thay vào x - 1 ( bỏ đi) rồi suy ra kết luận.