Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị nhỏ nhất của hàm số f x = x + 3 x 2 với x > 0 là:
A. 6 3
B. 3 4 3
C. 3 3 4 3
D. 2 3
Do x > 0 nên x 2 > 0 ; 3 x 2 > 0
Áp dụng bất đẳng thức Cô – si cho 3 số dương x 2 ; x 2 ; 3 x 2 ta được:
f x = x + 3 x 2 = x 2 + x 2 + 3 x 2 ≥ 3 . x 2 . x 2 . 3 x 2 3 = 3 . 3 4 3
Do x> 0 nên 2x >0 và 3 x > 0 .
Áp dụng bất đẳng thức Cô- si cho 2 số dương: 2 x ; 3 x
f x = 2 x + 3 x ≥ 2 . 2 x . 3 x = 2 6
Dấu “=” xảy ra khi 2 x = 3 x ⇔ x = 3 2 = 6 2 .
Ta có f x ≥ 0 ⇔ x + 3 m ≥ 2 ⇔ x ≥ 2 - 3 m
f x ≥ 0 với mọi x ∈ [ 1 ; + ∞ ) ⇔ [ 1 ; + ∞ ) ⊂ [ 2 - 3 m ; + ∞ ) ⇔ 2 - 3 m ≤ 1 ⇔ m ≥ 1 3 .
Chọn C.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x< \frac{9}{2}\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;...;4\right\}\Rightarrow\sum x=7\)
tìm giá trị nhỏ nhất của hàm số: \(y=x^2-3x-4\sqrt{x^2-3x+4}\) với \(x\in\left[1;4\right]\)
Đặt t=\(\sqrt{x^2-3x+4}\)
ta có t \(\in\)(\(\sqrt{2}\) ;\(2\sqrt{2}\))
suy ra y = \(t^2-4t-4\) = \(\left(t-2\right)^2-8\) \(\ge-8\)
Đặt \(t=\sqrt{x^2-3x+4}\).
Ta có hàm số có dạng: \(y=t^2-4t-4\)(*) trên \(\left[1;4\right]\)
Đỉnh \(I\left(2;-8\right)\)
Hàm số đạt GTNN khi \(t=2\Leftrightarrow\sqrt{x^2-3x+4}=2\Leftrightarrow x^2-3x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy hàm số (*) đạt GTNN trên \(\left[1;4\right]\) là -8 khi x=3
Ta có: x 2 - 5 x + 9 = x 2 - 2 x . 5 2 + 25 4 + 11 4 = x - 5 2 2 + 11 4 ≥ 11 4 ∀ x
Do đó: f x ≤ 2 11 4 = 8 11
Giá trị lớn nhất của hàm số f x = 2 x 2 - 5 x + 9 trên tập số thực là 8 11 x = 5 2
Với x > 1 thì x -1 >0 .
Áp dụng bất đẳng thức Cô- si ta có:
f x = x 2 + 2 x - 1 = x - 1 2 + 2 x - 1 + 1 2 ≥ 2 . x - 1 2 . 2 x - 1 + 1 2 ⇔ f x ≥ 2 + 1 2 = 5 2
Giá trị nhỏ nhất của hàm số f x = x 2 + 2 x - 1 v ớ i x > 1 là 5 2
Dấu “=’ xảy ra khi x - 1 2 = 2 x - 1 ⇔ x - 1 2 = 4 ⇔ x = 3 > 1