Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\left(x-4y\right)\left(2x-y+4\right)=-36\)
\(\Leftrightarrow2x^2+4x-9xy+4y^2-16y=-36\)
\(\Leftrightarrow xy=\frac{2\left(x+1\right)^2+4\left(y-2\right)^2}{9}+2>0\)
\(x-y+\frac{x^3-y^3}{x^3y^3}=0\)
\(\Leftrightarrow x-y+\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^3y^3}=0\)
\(\Leftrightarrow\left(x-y\right)\left(1+\frac{x^2+xy+y^2}{x^3y^3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\1+\frac{x^2+xy+y^2}{x^3y^3}=0\left(1\right)\end{matrix}\right.\)
Do \(xy>0\Rightarrow1+\frac{x^2+xy+y^2}{x^3y^3}>0\) \(\Rightarrow\left(1\right)\) vô nghiệm
Vậy \(x=y\)
\(\Rightarrow\left(x-4x\right)\left(2x-x+4\right)=-36\Leftrightarrow...\)
\(f\left(0\right)=-0+2=2\)
\(f\left(1\right)=2.1-1=1\)
\(f\left(2\right)=2.2-1=3\)
Vậy \(\left\{{}\begin{matrix}M=3\\m=1\end{matrix}\right.\) \(\Rightarrow T=4\)
a)
\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
\(\)Ta có
\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)
=> Bất phương trình đàu tiên sai, hệ bất phương trình sai
b)
\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1