Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a) Để Amin thì |3y+15|min
mà |3y+15| là giá trị tuyệt đối -> luôn luôn lớn hơn hoặc bằng 0
-> |3y+15|min = 0
-> 3y = -15
-> y = -5
Vậy GTNN của A=|3y+15| + 2 = 2
b) Để (2x + 2016 )2016min thì (2x+2016)min
mà 2x > 0, 2016 > 0 -> 2x+2016 sẽ lớn hơn hoặc bằng 0
-> (2x+2016)min=0
-> 2x = -2016
-> x = -1008
Vậy GTNN của B= (2x + 2016 )2016 = 0
a) a^2>0. Nếu a^2= (-).(-); (+).(+) thì ta có
th1: (+) . (+) = (+) Chọn (+)2 a^2>0
th2: (-). (-) = (+) Chọn (-)2 a^2>0
Vậy...
làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)2 là 0
=) A có giá trị nhỏ nhất là -2018
c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà -(x+5)2 có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)
Ta có: |2x + 2^2016| >/ 0
=> |2x + 2^2016| +5 >/ 5
|2x + 2^1016| +5 x 10^2 >/ 5 x 10^2
|2x + 2^1016| + 5 x 100 >/ 500
Vậy GTNN của C là 500
ta có
l 2x + 22016 l \(\ge\)0 với mọi x
=> l 2x + 22016 l + 500 \(\ge\)500
Vậy C min là 500 khi 2x + 22016 = 0
C = l 2x + 22016l + 5 x 102 có GTNN
<=> |2x + 22016| có GTNN
<=> 2x + 22016 = 0
<=> 2x = -22016
=> x = -22015
Vậy C = 0 + 5 x 102 = 500 có GTNN tại x = -22015
b) Ta có (3x-6)2 ≥ 0
=>10 + (3x-6)2 ≥ 0+10
=> B ≥ 10
GTNN của B bằng 10 tại 3x-6=0
=>3x=0+6
=> 3x=6
=>x=6:3
=> x=2
GTNN của B bằng 10 tại x=2
\(A=\left(5-x\right)^{2016}+|2y+6|-2015\)
Vì \(\left(5-x\right)^{2016}=[\left(5-x\right)^{1008}]^2\ge0,\forall x\)
\(|2y+6|\ge0,\forall y\)
nên \(A=\left(5-x\right)^{2016}+|2y+6|-2015\)\(\ge0+0-2015=2015,\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(5-x\right)^{2016}=0\\|2y+6|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5-x=0\\2y+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)
Vậy GTNN của A bằng -2015 \(\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)
\(B=\frac{-144}{\left(2x+1\right)^4+12}\)
Vì \(\left(2x+1\right)^4=[\left(2x+1\right)^2]^2\ge0,\forall x\)
nên \(\left(2x+1\right)^4+12\ge0+12=12,\forall x\)
\(\Rightarrow B=\frac{-144}{\left(2x+1\right)^4+12}\ge\frac{-144}{12}=-12,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^4=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của B bằng -12\(\Leftrightarrow x=-\frac{1}{2}\)
Chúc bạn học tốt ! Nguyen thi ngoc yen
A=(2x-3)2+7
Vì (2x-3)2 \(\ge\) 0 với mọi x
=>(2x-3)2+7 \(\ge\) 7 với mọi x
=>AMin=7
Dấu "=" xảy ra<=>2x-3=0<=>x=3/2
B=15-|2x+1|
Vì |2x+1| \(\ge\) 0 với mọi x => -|2x+1| \(\le\) 0 với mọi x
=>15-|2x+1| \(\le\) 15 với mọi x
=>BMax=15
Dấu "=" xảy ra<=>2x+1=0<=>x=-1/2
\(C=\frac{6}{\left(3x+2\right)^2+18}\)
C lớn nhất <=> (3x+2)2+18 nhỏ nhất
Vì (3x+2)2+18 \(\ge\) 18 với mọi x
=>\(C\le\frac{6}{18}=\frac{1}{3}\)
=>CMax=1/3
Dấu "=" xảy ra <=> 3x+2=0<=>x=-2/3
D=(x2+2)2-21
Vì x2+2 \(\ge\) 2 với mọi x
=>(x2+2)2 \(\ge\) 22=4 với mọi x
=>(x2+2)2-21 \(\ge\) 4-21=-17 với mọi x
=>DMin=-17
Dấu "=" xảy ra<=>x=0
Giá trị nhỏ nhất của C=105
Tại x=\(-2^{2015}\)
Nhớ duyệt