![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=2x^2-8x+1\)
\(E=2\left(x^2-4x+\frac{1}{2}\right)\)
\(E=2\left(x^2-2\cdot x\cdot2+4-\frac{7}{2}\right)\)
\(E=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(E=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=3x^2-8x+1=3\left(x^2-2.x.\frac{4}{3}+\frac{16}{9}\right)-\frac{16}{3}+1=3\left(x-\frac{4}{3}\right)^2-\frac{13}{3}\ge-\frac{13}{3}\)
Do đó Min P = \(-\frac{13}{3}\Leftrightarrow x=\frac{4}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhớ cho 5 sao luôn nhé
Ta có: \(4x^2-8x+7=4x^2-8x+4+3\left(2x-2\right)^2+3\ge3\)
\(\Rightarrow B>0\)
Vậy B có GTLN \(\Leftrightarrow\left(2x-2\right)^2+3\)có GTNN
Mà \(\left(2x-2\right)^2+3\ge3\Rightarrow Min\left(4x^2=8x+7\right)=3\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(\Rightarrow\)Max B = 3\(\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x-3\right)^2+21\)
Vì: \(\left(x-3\right)^2\ge0\)
=> \(\left(x-3\right)^2+21\ge21\)
Vậy GTNN của A là 21 khi x=3
\(M=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\)
Vì: \(-\left(x+4\right)^2\le0\)
=> \(-\left(x+4\right)^2+21\le21\)
Vậy GTLN của M là 21 khi x=-4