K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2021

Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};1\right]\)

\(y=f\left(t\right)=2t^2+t+4\)

Xét hàm \(f\left(t\right)=2t^2+t+4\) trên \(\left[-\dfrac{1}{2};1\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{4}\in\left[-\dfrac{1}{2};1\right]\)

\(f\left(-\dfrac{1}{2}\right)=4\) ; \(f\left(-\dfrac{1}{4}\right)=\dfrac{31}{8}\)\(f\left(1\right)=7\)

\(y_{max}=7\) khi \(t=1\) hay \(x=\dfrac{\pi}{2}\)

\(y_{min}=\dfrac{31}{8}\) khi \(sinx=-\dfrac{1}{4}\)

7 tháng 8 2017

0 ≤ |sinx| ≤ ln n - 2 ≤ -2|sinx| ≤ 0

Vậy giá trị lớn nhất của y = 3 - 2|sin x| là 3, đạt được khi sin x = 0; giá trị nhỏ nhất của y là 1, đạt được khi sinx = 1 hoặc sinx = -1

23 tháng 3 2018

Đáp án D

24 tháng 9 2021

\(sin\left(\dfrac{\pi}{3}+x\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{3}{2}+sin\left(\dfrac{\pi}{3}+x\right)\in\left[\dfrac{1}{2};\dfrac{5}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{1}{2}\\y_{max}=\dfrac{5}{2}\end{matrix}\right.\)

28 tháng 10 2023

\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)

\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)

\(f'\left(x\right)=0\)

=>\(cosx\left(sinx+2\right)=0\)

=>\(cosx=0\)

=>\(x=\dfrac{\Omega}{2}+k\Omega\)

mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)

nên \(x=\dfrac{\Omega}{2}\)

\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)

=1+4-5=0

\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)

=>Chọn D

28 tháng 10 2023

Hình như  \(\text{Ω}\) là \(\pi\) phải không ạ?