Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).
b) \(y=2-\sqrt{cosx}\) xác định khi \(0\le cosx\le1\) .
Giá trị lớn nhất của \(y=2-\sqrt{cosx}=2-\sqrt{0}=2\) khi \(cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=2-\sqrt{cosx}=2-\sqrt{1}=1\) khi \(cosx=1\Leftrightarrow x=k2\pi\).
Đề là:
\(y=\sqrt{4-3cos^23x}+1\) đúng không nhỉ?
Ta có:
\(0\le cos^23x\le1\Rightarrow1\le\sqrt{4-3cos^23x}\le2\)
\(\Rightarrow2\le y\le3\)
\(y_{min}=2\) khi \(cos^23x=1\)
\(y_{max}=3\) khi \(cos3x=0\)
Ta có: 0 ≤ sin 2 x ≤ 1 ⇒ 1 ≤ 4 - 3 sin 2 x ≤ 4
* y = 1 ⇔ sin 2 x = 1 ⇔ cos x = 0 ⇔ x = π 2 + k π
* y = 4 ⇔ sin 2 x = 0 ⇔ x = k π
Vậy giá trị lớn nhất của hàm số bằng 4, giá trị nhỏ nhất bằng 1.
Chọn B
+) y' = 3x2 -6x -9
+) y' = 0 => 3x2 -6x -9 = 0 <=> x= -1 ; x = 3
+BBT:
Từ bảng biến thiên suy ra max y = 40 tại x = -1, min y = -71 tại x = -4
b) BBT:
Từ bảng biến thiên suy ra max y = 40 tại x = 5; min y = 8 tại x = 3
oh