Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị lớn nhất của biểu thức là - 3,1
dấu bằng xảy ra khi x-2016 = 0
=> x= 2016
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
Ta có :
\(\left(x-2016\right)^2\ge0\)
\(-\left(x-2016\right)^2\le0\)
\(-\left(x-2016\right)^2-3,1\le-3,1\)
\(\Rightarrow Max_B=-3,1\)
\(\Leftrightarrow-\left(x-2016\right)^2=0\)
\(\Rightarrow\left(x+2016\right)^2=0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)
TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)
TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)
TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)
TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)
TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)
TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x
Vậy:...
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
=nhật đẹp zai
B=-(x-2016)2 --3,1
Ta có :
(x-2016)2 \(\ge0\)
=> -( x-2016)2 \(\le0\)
=> -(x-2016)2 -3,1 \(\le0\)
\(\Leftrightarrow\)(x-2016)2 =0 <=> x - 2016 = 0 <=> x= 2016
Vậy GTLN của B là 0 khi x = 2016