K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

1 ) \(\left(x^2+1\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+1=0\\x^2+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=-1\\x^2=-5\end{array}\right.\) loại ( vì \(x^2\ge0\) )

Vậy không có giá trị nào thõa mãn .

2 ) \(4x\left(5x-1\right)+10x.\left(2-2x\right)=16\)

\(\Leftrightarrow20x^2-4x+20x-20x^2=16\)

\(\Leftrightarrow16x=16\)

\(\Leftrightarrow x=1\)

3 ) \(\left(100-a\right)\left(100-b\right)\)

      \(=10000-100b-100a-ab\)

      \(=100\left(100-a-b\right)-ab\)

\(\Rightarrow x=-1\)

 

          

10 tháng 1 2018

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

31 tháng 10 2022

Bài 1:

a: \(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)

\(=\dfrac{-x-1+2x-2-x+5}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\dfrac{2}{1-2x}\)

b: Để A>0 thì 1-2x>0

=>2x<1

=>x<1/2

 

16 tháng 10 2016

\(\left(x+1\right)\left(x-2\right)^2+x^2\left(4-x\right)=13\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)+x^2\left(4-x\right)=13\)

\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4+4x^2-x^3=13\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-3\end{array}\right.\)

22 tháng 10 2016

Chân thành cảm ơn bạn rất nhiều!

19 tháng 3 2020

a/\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)}{x-1}+\frac{x^2-8x+4}{2x+1}=0\)

\(\Leftrightarrow x-4+\frac{x^2-8x+4}{2x+1}=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)+x^2-8x+4=0\)

\(\Leftrightarrow3x^2-15x=0\Leftrightarrow x\left(x-5\right)=0.....\)Vậy x=0, x=5

13 tháng 3 2020

2/-Với x=2 ta có VT=9=\(3^2\).Thỏa mãn y=3 nguyên

-Với x>2 có \(x^2+x+2+1< x^2+2x+1=\left(x+1\right)^2\)(1)

Lại có x>2 nên \(x^2+x+3>x^2\left(2\right)\)

Từ (1) và (2) có \(\left(x+1\right)^2>x^2+x+3>x^2\Rightarrow VT=\varnothing\)

-Với x=3 VP=15 không là sô chính phương

-Với x<3 có \(x^2+x+3>x^2+2x+1=\left(x+1\right)^2\)(3)

\(x^2+x+3< x^2\left(4\right)\).Từ (3) và (4) suy ra \(VT=\varnothing\)

15 tháng 12 2016

bạn làm được chưa biết chỉ mình vs nhékhocroikhocroi