Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không tìm được đâu. Nếu x âm và càng bé hoặc x dương và càng lớn thì cái đó càng gần bằng 0
Như thế này cho dễ nhé :)
\(\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)
Đặt \(t=\frac{1}{x},a=\frac{1}{2007}\)
Khi đó bt trở thành \(t^2-2at+a=\left(t^2-2at+a^2\right)+a-a^2=\left(t-a\right)^2+a-a^2\ge a-a^2\)
Vậy BT đạt giá trị nhỏ nhất bằng \(\frac{1}{2007}-\frac{1}{2007^2}\) khi \(\frac{1}{x}=\frac{1}{2007}\Rightarrow x=2007\)
Đặt A = \(\dfrac{x^2-2x+2007}{2007x^2}\)
A = \(\dfrac{1}{2007}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{x^2}\)
A = ( \(\dfrac{1}{x^2}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{2007^2}\) ) + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\) )
A = ( \(\dfrac{1}{x}-\dfrac{1}{2007}\))2 + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\))
Để Amin <=> \(\dfrac{1}{x}-\dfrac{1}{2007}\) = 0
<=> x = 2007
Vậy x = 2007 thì Amin
bài này từng có trên violimpic đấy bạn
1/ Bạn trên làm rồi mình không làm lại.
2/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}\)
\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5}{2\sqrt{6}}+\frac{3\sqrt{2}-3\sqrt{3}+3\sqrt{5}-\sqrt{10}+\sqrt{15}-5}{-2\sqrt{6}}\)
\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5-3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}-\sqrt{15}+5}{2\sqrt{6}}\)
\(=\frac{6\sqrt{3}-6\sqrt{5}+2\sqrt{10}}{2\sqrt{6}}=\frac{3}{\sqrt{2}}-\frac{3\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{9\sqrt{2}-3\sqrt{30}+2\sqrt{15}}{6}\)
\(\frac{x^2-2x+2007}{2007x^2}=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}+\frac{2007}{2007x^2}=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}\)
đặt t = 1/x
=> \(\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\frac{1}{2007}-\frac{2t}{2007}+t^2=\frac{1}{2007}-\frac{2t}{2007}+\frac{2007t^2}{2007}=\frac{2007t^2-2t+1}{2007}\)
giải theo kiểu casio 570 VN PLUS cho nhanh nhé
bấm MODE 5 3 2007 = -2 = 1 = = = = =
ra gtnn của 2007t2 - 2t + 1 là 2006/2007 tại t = 1/2007
vậy gtnn của \(\frac{2007t^2-2t+1}{2007}\)là \(\frac{\frac{2006}{2007}}{2007}\)tại t = 1/2007
t = 1/2007 => 1/x = 1//2007 => x = 2007
vậy x = 2007 thì biểu thức có gtnn
Câu 3
a, ĐKXĐ: x>0, x\(\ne\)4
M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:
M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)
= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)
= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)
Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)
c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)
<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)
Vì 2>0 <=> \(\sqrt{x}-2< 0\)
<=> \(\sqrt{x}< 2\)
<=> x<4
Vậy để M<1 thì 0<x<4
<=>
Câu 2
a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))
<=> \(\sqrt{3x+2}=\sqrt{25}\)
<=> 3x+2=25
<=> 3x= 23
<=> x=\(\dfrac{23}{3}\)
Vậy S= \(\left\{\dfrac{23}{3}\right\}\)
\(E=\dfrac{\left(X+2007\right)\left(X+2008\right)}{X}=\dfrac{X^2+4015X+4030056}{X}\)
\(=X+\dfrac{4030056}{X}+4015\) \(\ge2\sqrt{X.\dfrac{4030056}{X}}+4015\)\(=2\sqrt{4030056}+4015\).
Vậy GTNN của \(E=2\sqrt{4030056}+4015\).
Dấu bằng xảy ra khi và chỉ khi \(X=\dfrac{4030056}{X}\) hay \(X=\sqrt{4030056}\).
\(\frac{x^2-2x+2007}{2007x^2}\ge\frac{2006}{4028049}\) khi x=2007
\(A=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\left(\frac{1}{x^2}-2.\frac{1}{2007}.\frac{1}{x}+\frac{1}{2007^2}\right)+\frac{1}{2007}-\frac{1}{2007^2}.\)
\(=\left(\frac{1}{x}-\frac{1}{2007}\right)^2+\frac{2006}{2007^2}\ge\frac{2006}{2007^2}.\)
\(Amin=\frac{2006}{2007^2}\Leftrightarrow x=2007.\)
Đặt
\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2\cdot x\cdot2007\cdot2007^2}{2007^2x^2}\)
\(\Rightarrow A=\dfrac{\left(x-2007\right)^2}{2007^2x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)
Dấu ''='' xảy ra
\(\Leftrightarrow\dfrac{\left(x-2007\right)^2}{2007^2x^2}=0\Rightarrow\left(x-2007\right)^2=0\)
\(\Rightarrow x=2007\)
Vậy \(A_{MIN}=\dfrac{2006}{2007^2}\Leftrightarrow x=2007\)
Đặt A=\(\dfrac{x^2-2x+2007}{2007x^2}\)
2007A=\(\dfrac{2007x^2-2.2007x^2+2007^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{2007x^2-2.2007x+2007^2-2006x^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{x^2-2.2007x+2007^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{\left(x-2007\right)^2}{2007x^2}>=0\)
=>2007A>=\(\dfrac{2006}{2007}\)
=>A>=\(\dfrac{2006}{2007^2}\)
=>GTNN của A=\(\dfrac{2006}{2007^2}\)Dấu = xảy ra khi x=2007