\(\dfrac{x^2-2x+2007}{2007x^2}\) có giá trị nhỏ nhất là

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

A=x22x+20072007x2A=x2−2x+20072007x2
<=> (2007A1)x2+2x2007=0(2007A−1)x2+2x−2007=0
Delta' =1+2007(2007A1)0=1+2007(2007A−1)≥0
<=> A200620072

7 tháng 10 2017

https://diendan.hocmai.vn/threads/toan-dai-kho-day.318105/

10 tháng 6 2017

điều kiện là j bạn :)

10 tháng 6 2017

Chắc là tự tìm đk đó Nguyễn Ngọc Sáng 

3 tháng 6 2017

Đặt

\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2\cdot x\cdot2007\cdot2007^2}{2007^2x^2}\)

\(\Rightarrow A=\dfrac{\left(x-2007\right)^2}{2007^2x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)

Dấu ''='' xảy ra

\(\Leftrightarrow\dfrac{\left(x-2007\right)^2}{2007^2x^2}=0\Rightarrow\left(x-2007\right)^2=0\)

\(\Rightarrow x=2007\)

Vậy \(A_{MIN}=\dfrac{2006}{2007^2}\Leftrightarrow x=2007\)

3 tháng 6 2017

Đặt A=\(\dfrac{x^2-2x+2007}{2007x^2}\)

2007A=\(\dfrac{2007x^2-2.2007x^2+2007^2}{2007x^2}\)

2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{2007x^2-2.2007x+2007^2-2006x^2}{2007x^2}\)

2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{x^2-2.2007x+2007^2}{2007x^2}\)

2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{\left(x-2007\right)^2}{2007x^2}>=0\)

=>2007A>=\(\dfrac{2006}{2007}\)

=>A>=\(\dfrac{2006}{2007^2}\)

=>GTNN của A=\(\dfrac{2006}{2007^2}\)Dấu = xảy ra khi x=2007

29 tháng 9 2016

Không tìm được đâu. Nếu x âm và càng bé hoặc x dương và càng lớn thì cái đó càng gần bằng 0

29 tháng 9 2016

Như thế này cho dễ nhé :)

\(\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)

Đặt \(t=\frac{1}{x},a=\frac{1}{2007}\)

Khi đó bt trở thành \(t^2-2at+a=\left(t^2-2at+a^2\right)+a-a^2=\left(t-a\right)^2+a-a^2\ge a-a^2\)

Vậy BT đạt giá trị nhỏ nhất bằng \(\frac{1}{2007}-\frac{1}{2007^2}\) khi \(\frac{1}{x}=\frac{1}{2007}\Rightarrow x=2007\)

4 tháng 10 2016

1/ Bạn trên làm rồi mình không làm lại.

2/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}\)

\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5}{2\sqrt{6}}+\frac{3\sqrt{2}-3\sqrt{3}+3\sqrt{5}-\sqrt{10}+\sqrt{15}-5}{-2\sqrt{6}}\)

\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5-3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}-\sqrt{15}+5}{2\sqrt{6}}\)

\(=\frac{6\sqrt{3}-6\sqrt{5}+2\sqrt{10}}{2\sqrt{6}}=\frac{3}{\sqrt{2}}-\frac{3\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{9\sqrt{2}-3\sqrt{30}+2\sqrt{15}}{6}\)

4 tháng 10 2016

\(\frac{x^2-2x+2007}{2007x^2}=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}+\frac{2007}{2007x^2}=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}\)

đặt t = 1/x

=> \(\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\frac{1}{2007}-\frac{2t}{2007}+t^2=\frac{1}{2007}-\frac{2t}{2007}+\frac{2007t^2}{2007}=\frac{2007t^2-2t+1}{2007}\)

giải theo kiểu casio 570 VN PLUS cho nhanh nhé

bấm MODE 5 3 2007 = -2 = 1 = = = = =

ra gtnn của 2007t2 - 2t + 1 là 2006/2007 tại t = 1/2007

vậy gtnn của \(\frac{2007t^2-2t+1}{2007}\)là \(\frac{\frac{2006}{2007}}{2007}\)tại t = 1/2007

t = 1/2007  => 1/x = 1//2007  => x = 2007

vậy x = 2007 thì biểu thức có gtnn

30 tháng 7 2017

\(B=\frac{x^2-2x+2007}{2007x^2}\)

\(\Leftrightarrow B.2007x^2=x^2-2x+2017\)

\(\Leftrightarrow x^2-B.2007x^2-2x+2017=0\)

\(\Leftrightarrow x^2\left(1-2007B\right)-2x+2017=0\)

\(\Delta=4-4\left(1-2007B\right)2007\ge0\)

\(\Rightarrow B\ge\frac{2006}{2007^2}\) Dấu "=" xảy ra \(\Leftrightarrow x=2007\)

Vậy \(B_{min}=\frac{2006}{2007^2}\) tại \(x=2007\)

\(\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

1 tháng 3 2017

Đặt A = \(\dfrac{x^2-2x+2007}{2007x^2}\)

A = \(\dfrac{1}{2007}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{x^2}\)

A = ( \(\dfrac{1}{x^2}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{2007^2}\) ) + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\) )

A = ( \(\dfrac{1}{x}-\dfrac{1}{2007}\))2 + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\))

Để Amin <=> \(\dfrac{1}{x}-\dfrac{1}{2007}\) = 0

<=> x = 2007

Vậy x = 2007 thì Amin

bài này từng có trên violimpic đấy bạn

1 tháng 3 2017

https://hoc24.vn/vip/phitaiminh9a1

ờ,mk thi vio mà!!!

1 tháng 5 2017

tui hỏng biết chỉ tui đi hay k cũng được!

bài này tìm GTLN thì có lẽ hay hơn -,- 

C1: \(\frac{x^2-2x+1}{x^2+4x+5}=\frac{\left(x-1\right)^2}{x^2+4x+5}\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2: Đặt \(A=\frac{x^2-2x+1}{x^2+4x+5}\)\(\Leftrightarrow\)\(\left(A-1\right)x^2+2\left(2A+1\right)x+5A-1=0\)

+) Nếu \(A=1\) thì \(x=-2\)

+) Nếu \(A\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta'\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2A+1\right)^2-\left(A-1\right)\left(5A-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4A^2+4A+1-5A^2+6A-1\ge0\)

                                                        \(\Leftrightarrow\)\(A^2-10A\le0\)

                                                        \(\Leftrightarrow\)\(\left(A-5\right)^2\le25\)

                                                        \(\Leftrightarrow\)\(0\le A\le10\)

\(\Rightarrow\)\(A\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

27 tháng 9 2016

Đặt \(A=\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)

Lại đặt \(t=x^2,t\ge0\)

Suy ra \(A=t^2-\frac{2}{2007}t+\frac{1}{2007}\)

Tới đây bài toán đưa về tìm giá trị nhỏ nhất của đa thức bậc 2

27 tháng 9 2016

Đặt t = 1/x nhé