K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)

b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)

30 tháng 12 2023

Bài 1:

Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0

=>m<>2

a=2-m

b=-2

Bài 2:

a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0

=>m>5

b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0

=>m<5

Bài 3:

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)

b: Để (d1) cắt (d2) thì \(3-m\ne2\)

=>\(m\ne1\)

c: Để (d1) cắt (d2) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)

=>m=2

9 tháng 12 2020

a Để hàm số y đồng biến trên R 

thì k2+2/k-3 > 0  đk k khác 3 

mà k2+2>0 thì k-3 > 0 suy ra k>3

b Để hàm số Y đồng biến trên R

thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2

12 tháng 7 2021

undefined

a) Để hàm số đồng biến thì k(k-3)>0

\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)

b) Để hàm số nghịch biến thì k(k-3)<0

hay 0<x<3

bn co sai de ai khong z

25 tháng 12 2023

Bài 1:

Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0

=>m>3

Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0

=>m<3

Bài 4:

a: Vì \(a=3-\sqrt{2}>0\)

nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R

b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)

Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)

Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)

Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)

=9-4-1

=9-5

=4

Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)

\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)

7 tháng 4 2018

f(x) xác định trên R.

f' (x)=x2+2ax+4;Δf''=a2-4

Cách 1.

+ nếu a2-4<0 hay -2< a < 2 thì f’(x) > 0, ∀x ∈R => hàm số đồng biến trên R.

+ Nếu a2-4=0 hay a=±2

Với a = 2 thì f’(x) = (x+2)2>0 ∀x ≠ -2. Hàm số đồng biến trên R.

Với a = -2 thì f’(x) = (x-2)2>0 ∀x ≠ 2. Hàm số đồng biến trên R.

+ Nếu a2-4>0 hay a< - 2 hoặc a> 2 thì f’(x) = 0 có 2 nghiệm phân biệt x1,x2. Giả sử x1<x2, khi đó hàm số nghịch biến trên khoảng (x1,x2). Vậy các giá trị này của a không thõa mãn yên cầu bài toán.

Cách 2.

Hàm số đồng biến trên R khi và chỉ khi f’(x) > 0 ∀x ∈R f’(x) = 0 chỉ tại một số hữu hạn điểm.

Kết luận: hàm số đồng biến trên R khi và chỉ khi -2≤ a≤2