Giá trị của biểu thức A = 2x(3x – 1) – 6x(x + 1) – (3 – 8x) là:

A. -16x –...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

A = 2x(3x – 1) – 6x(x + 1) – (3 – 8x)

ó A = 2x.3x – 2x.1 – 6x.x – 6x.1 – 3 + 8x

ó A = 6 x 2 – 2x – 6 x 2 – 6x – 3 + 8x

ó A = -3

Đáp án cần chọn là: B

a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=3/2

c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)

=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)

=>C>=-12/7

Dấu '=' xảy ra khi x=1/2

10 tháng 8 2017

a) \(\dfrac{2x+3}{x-5}=\dfrac{2\left(x-5\right)+13}{x-5}=2+\dfrac{13}{x-5}\)

Để \(2+\dfrac{13}{x-5}\in Z\)

thì \(\dfrac{13}{x-5}\in Z\Rightarrow13⋮x-5\)

\(\Rightarrow x-5\inƯ\left(13\right)\)

\(\Rightarrow x-5\in\left\{\pm1;\pm13\right\}\)

Xét các trường hợp...

b) \(\dfrac{x^3-x^2+2}{x-1}=\dfrac{x^2\left(x-1\right)+2}{x-1}=x^2+\dfrac{2}{x-1}\)

Tương tự câu a)

c) \(\dfrac{x^3-2x^2+4}{x-2}=\dfrac{x^2\left(x-2\right)+4}{x-2}=x^2+\dfrac{4}{x-2}\)

...

d) \(\dfrac{2x^3+x^2+2x+2}{2x+1}=\dfrac{x^2\left(2x+1\right)+2x+2}{2x+1}=x^2+\dfrac{2x+2}{2x+1}\)

Khi đó lí luận cho \(2x+2⋮2x+1\)

\(\Rightarrow\left(2x+1\right)+1⋮2x+1\)

\(\Rightarrow1⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(1\right)\)

...

e) \(\dfrac{3x^3-7x^2+11x-1}{3x-1}=\dfrac{x^2\left(3x-1\right)-2x\left(3x-1\right)+3\left(3x-1\right)+2}{3x-1}\)

\(=\dfrac{\left(x^2-2x+3\right)\left(3x-1\right)+2}{3x-1}=\left(x^2-2x+3\right)+\dfrac{2}{3x-1}\)

...

f) \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\dfrac{\left(x^2\right)^2-4^2}{\left(x-2\right)^2\left(x^2+4\right)}\)

\(=\dfrac{\left(x^2-4\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\dfrac{x^2-4}{\left(x-2\right)^2}=\dfrac{x+2}{x-2}=\dfrac{\left(x-2\right)+4}{x-2}=1+\dfrac{4}{x-2}\)

....

10 tháng 8 2017

thank you

17 tháng 3 2018

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

17 tháng 3 2018

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)

21 tháng 7 2017

thôi mk tl dc rùi

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\(x^3-7x-6=x^3-x-6x-6\)

\(=x(x^2-1)-6(x+1)\)

\(=x(x-1)(x+1)-6(x+1)=(x+1)[x(x-1)-6]\)

\(=(x+1)(x^2-x-6)=(x+1)[x^2-3x+2x-6]\)

\(=(x+1)[x(x-3)+2(x-3)]=(x+1)(x+2)(x-3)\)

b) \(x^3-6x^2+8x\)

\(=x(x^2-6x+8)\)

\(=x(x^2-4x-2x+8)\)

\(=x[x(x-4)-2(x-4)]=x(x-2)(x-4)\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

c) \(x^4+2x^3-16x^2-2x+15\)

\(=(x^4+2x^3-x^2-2x)-15x^2+15\)

\(=[(x^4-x^2)+(2x^3-2x)]-15(x^2-1)\)

\(=[x^2(x^2-1)+2x(x^2-1)]-15(x^2-1)\)

\(=(x^2-1)(x^2+2x)-15(x^2-1)=(x^2-1)(x^2+2x-15)\)

\(=(x^2-1)(x^2-3x+5x-15)=(x^2-1)[x(x-3)+5(x-3)]\)

\(=(x^2-1)(x+5)(x-3)=(x-1)(x+1)(x+5)(x-3)\)

d)

\(x^3-11x^2+30x=x(x^2-11x+30)\)

\(=x(x^2-5x-6x+30)\)

\(=x[x(x-5)-6(x-5)]=x(x-6)(x-5)\)

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Bài 1:
a)

ĐKXĐ: \(x^2+y^2\neq 0\Leftrightarrow x,y\) không cùng đồng thời bằng $0$

Tức là: \(\left[\begin{matrix} x=0; y\neq 0\\ y=0; x\neq 0\\ x\neq 0; y\neq 0\end{matrix}\right.\)

b)

ĐKXĐ: \(x^2-2x+1\neq 0\Leftrightarrow (x-1)^2\neq 0\Leftrightarrow x\neq 1\)

c)

ĐKXĐ: \((x+3)^2+(y-2)^2\neq 0\Leftrightarrow x+3,y-2\) không cùng đồng thời bằng $0$

Tức là \(\left[\begin{matrix} x=-3, y\neq 2\\ x\neq -3; y=2\\ x\neq -3; y\neq 2\end{matrix}\right.\)

d)

ĐKXĐ: \(x^2+6x+10\neq 0\Leftrightarrow (x+3)^2+1\neq 0\Leftrightarrow (x+3)^2\neq -1\)

\(\Leftrightarrow x\in\mathbb{R}\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Lời giải:
a)

ĐKXĐ: \(x^2+3x-10\neq 0\Leftrightarrow (x-2)(x+5)\neq 0\Leftrightarrow x\neq 2; x\neq -5\)

Để giá trị phân thức bằng $0$ thì: \(x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=-2$

b)

ĐKXĐ: \(x^3-3x^2-4x\neq 0\Leftrightarrow x(x^2-3x-4)\neq 0\)

\(\Leftrightarrow x(x+1)(x-4)\neq 0\Leftrightarrow x\neq 0; x\neq -1; x\neq 4\)

Để giá trị của phân thức bằng $0$ thì $x^3-16x=0$

$\Leftrightarrow x(x^2-16)=0\Leftrightarrow x(x-4)(x+4)=0$

\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=\pm 4\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=-4$

c)

ĐKXĐ: \(x^3+2x-3\neq 0\Leftrightarrow (x-1)(x^2+x+3)\neq 0\Leftrightarrow x\neq 1\)

Để giá trị phân thức bằng $0$ thì:

$x^3+x^2-x-1=0\Leftrightarrow (x-1)(x+1)^2=0\Leftrightarrow x=1$ hoặc $x=-1$

Kết hợp với ĐKXĐ suy ra $x=-1$