Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{2}{y}=\frac{3}{z+5}\Leftrightarrow\frac{4}{y^2}=\frac{9}{\left(z+5\right)^2}\) hay ta có :\(\left(z+5\right)^2=\frac{9}{4}y^2\Rightarrow2y^2-\frac{9}{4}y^2=-25\Leftrightarrow y^2=100\)
TH1.\(y=10\Rightarrow\frac{4}{x+1}=\frac{2}{10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=15\\z=10\end{cases}}\)
TH2.\(y=-10\Rightarrow\frac{4}{x+1}=\frac{2}{-10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=-25\\z=-20\end{cases}}\)
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)
M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
Đề sai nhé mẫu mũ 2010 => M =1 mới đúng
Bài 20:
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = x
=> x = y = z
mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
b) a + c = 2b
=> d(a + c) = 2bd
=> ad + cd = 2bd (1)
Có: c(b + d) = 2bd
=> cb + cd = 2bd (2)
(1);(2) => ad + cd = cb + cd
=> ad = cb
=> a/b = c/d
=> đpcm
đợi nghĩ nốt c đã
ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
a .
\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)
c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )
Mà \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)x \(\frac{a}{b}\).x \(\frac{a}{b}\) = \(\frac{a}{b}\) x\(\frac{b}{c}\)x\(\frac{c}{d}\)= \(\frac{a}{d}\)
Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)
x-y=2<=>x=y+2
thay vào Q được:
Q=(y+2)^2+y^2-(y+2)y
=y^2+2y+4
=(y+1)^2+3
=>A>=3
dấu bằng xảy ra <=>y= -1 và x=1
vậy min Q=3
Do x/2 = y/4 => 2x/4 = y/4 => 2x = y
Ta có: x2.y2 = 4
=> x2.(2x)2 = 4
=> x2.22.x2 = 4
=> x4.4 = 4
=> x4 = 1
Mà x dương => x = 1
=> y = 2.1 = 2
Vậy cặp số dương (x;y) thỏa mãn là (1;2)