\(\dfrac{a}{m}\) ,Y=\(\dfrac{b}{m}\) (a,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Vì x < y

=> a < b

Theo đề bài , ta có :

\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\) ; \(y=\dfrac{b}{m}=\dfrac{2b}{2m}\) ; \(z=\dfrac{a+b}{m}\)

Từ a<b , ta lại có :

a < b => a + a < a + b => 2a < a + b (1)

a < b => a + b < b + c => a + b < 2b (2)

Từ (1) và (2)

=> \(\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

<=> \(x< y< z\)

25 tháng 5 2017

Cảm ơn bạn ok

8 tháng 4 2017

Theo đề bài ta có x = , y = ( a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = , y = ; z =

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y (2)

Từ (1) và (2) ta suy ra x < z< y

8 tháng 4 2017

Hãy chứng tỏ rằngGiả sử x = ; y = ( a, b, m Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z =∈ thì ta có x < z < yLời giải:Theo đề bài ta có x = , y = ( a, b, m Z, m > 0)∈Vì x < y nên ta suy ra a< bTa có : x = , y = ; z = Vì a < b => a + a < a +b => 2a < a + b

24 tháng 6 2017

Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)

Từ (1), Suy ra:

\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)

\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)

Từ (2);(3), ta có:

\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\left(đpcm\right)\)

25 tháng 6 2017

Lạc đề rồi kìa ucche

23 tháng 8 2017

Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)

\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)

\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)

\(\Rightarrow x< z< y\)

22 tháng 8 2016

Ta có x = \(\frac{2a}{2m}\)\(\frac{a+b}{2m}\)= z

y = \(\frac{2b}{2m}\)\(\frac{a+b}{2m}\)= z

22 tháng 8 2016

Do x < y => a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2x < a+b/m < 2y

=> x < a+b/m : 2 < 2y

=> x < a+b/m . 1/2 < y

=> x < a+b/2m < y

Chứng tỏ ...

1 tháng 8 2018

Có x=a/m; y=b/m và x<y nên a/m<b/m ⇒a<b

Giả sử z>x là đúng thì\(\dfrac{a+b}{2m}>\dfrac{a}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{a}{m}>0\\ \Leftrightarrow\dfrac{a+b-2a}{2m}>0\Leftrightarrow\dfrac{b-a}{2m}>0\\ m\text{à}b>a;m>0n\text{ê}nz>xl\text{à}\text{đ}\text{úng (1)}\)Giả sử z<y là đúng thì

\(\dfrac{a+b}{2m}< \dfrac{b}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{b}{m}< 0\\ \Leftrightarrow\dfrac{a+b-2b}{2m}< 0\Leftrightarrow\dfrac{a-b}{2m}< 0\\ m\text{à}a< b;m>0n\text{ê}nz< yl\text{à}\text{đ}\text{úng (2)}\)

Từ (1)và(2) suy ra đpcm

2 tháng 8 2017

Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)(  a, b, m \(\in\) Z, m > 0 )

Vì x < y nên ta suy ra a < b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y


 

ta có: x < y hay a/m < b/m => a < b

so sánh x,y,z ta chuyển chúng cùng mẫu: 2m

x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m

* Mà a < b :

=> a + a < b + a

hay 2a < b + a

=> x < Z (1)

* mà a < b:

=> a + b < b + b

hay a + b < 2b

=> Z < y (2)

từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y